Einhüllende Algebren halbeinfacher Lie-Algebren
Es sei 9 eine endlich dimensionale Lie-Algebra uber dem Korper der komple- xen Zahlen. In der Darstellungstheorie von gist eine der am einfachsten zu stellenden Fragen die nach einer Beschreibung aller irreduziblen Darstellungen von 9 oder (iiquivalent dazu) aller einfacher Moduln uber der universellen ein- hullenden Algebra U (g) von g. Eine einfache Antwort auf diese Frage hat man nur, wenn 9 kommutativ ist. Hier ist auch U(g) kommutativ, also entsprechen die Isomorphieklassen einfa- cher U (g)-Moduln eindeutig den maximal en Idealen in U (g). Da hier U (g) zur Algebra der polynomialen Funktionen auf dem Dualraum g* von 9 isomorph ist, werden diese maximalen Ideale nach dem schwachen Nullstellensatz durch die Punkte von g* klassifiziert. Jede irreduzible Darstellung von gist demnach eindimensional, jede Linearform auf 9 legt soleh eine Darstellung fest. Fur andere Lie-Algebren sind die Verhiiltnisse viel komplizierter. 1st 9 zum Beispiel einfach, so ist bisher nur fUr g=Glz eine Klassifikation der irreduzib- len Darstellungen bekannt (vorgelegt von R Block), die jedoch weit davon ent- femt ist, iihnlich explizit wie die im kommutativen Fall zu sein. Fur noch gro- Bere Lie-Algebren scheint selbst eine solehe Klassifikation nicht erreichbar zu sein. Es scheint daher sinnvoll, zuniichst ein einfacheres Problem zu losen, das im kommutativen Fall mit dem alten zusammenfiillt. Dies ist die Untersuchung der primitiven Ideale von U(g), das heiBt der Annullatoren in U(g) der einfa- chen U(g)-Moduln. Man mag hoffen, daraus auch Informationen uber die moglichen einfachen Moduln zu erhalten.
1124373499
Einhüllende Algebren halbeinfacher Lie-Algebren
Es sei 9 eine endlich dimensionale Lie-Algebra uber dem Korper der komple- xen Zahlen. In der Darstellungstheorie von gist eine der am einfachsten zu stellenden Fragen die nach einer Beschreibung aller irreduziblen Darstellungen von 9 oder (iiquivalent dazu) aller einfacher Moduln uber der universellen ein- hullenden Algebra U (g) von g. Eine einfache Antwort auf diese Frage hat man nur, wenn 9 kommutativ ist. Hier ist auch U(g) kommutativ, also entsprechen die Isomorphieklassen einfa- cher U (g)-Moduln eindeutig den maximal en Idealen in U (g). Da hier U (g) zur Algebra der polynomialen Funktionen auf dem Dualraum g* von 9 isomorph ist, werden diese maximalen Ideale nach dem schwachen Nullstellensatz durch die Punkte von g* klassifiziert. Jede irreduzible Darstellung von gist demnach eindimensional, jede Linearform auf 9 legt soleh eine Darstellung fest. Fur andere Lie-Algebren sind die Verhiiltnisse viel komplizierter. 1st 9 zum Beispiel einfach, so ist bisher nur fUr g=Glz eine Klassifikation der irreduzib- len Darstellungen bekannt (vorgelegt von R Block), die jedoch weit davon ent- femt ist, iihnlich explizit wie die im kommutativen Fall zu sein. Fur noch gro- Bere Lie-Algebren scheint selbst eine solehe Klassifikation nicht erreichbar zu sein. Es scheint daher sinnvoll, zuniichst ein einfacheres Problem zu losen, das im kommutativen Fall mit dem alten zusammenfiillt. Dies ist die Untersuchung der primitiven Ideale von U(g), das heiBt der Annullatoren in U(g) der einfa- chen U(g)-Moduln. Man mag hoffen, daraus auch Informationen uber die moglichen einfachen Moduln zu erhalten.
69.99 In Stock
Einhüllende Algebren halbeinfacher Lie-Algebren

Einhüllende Algebren halbeinfacher Lie-Algebren

by J. C. Jantzen
Einhüllende Algebren halbeinfacher Lie-Algebren

Einhüllende Algebren halbeinfacher Lie-Algebren

by J. C. Jantzen

Paperback(Softcover reprint of the original 1st ed. 1983)

$69.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Es sei 9 eine endlich dimensionale Lie-Algebra uber dem Korper der komple- xen Zahlen. In der Darstellungstheorie von gist eine der am einfachsten zu stellenden Fragen die nach einer Beschreibung aller irreduziblen Darstellungen von 9 oder (iiquivalent dazu) aller einfacher Moduln uber der universellen ein- hullenden Algebra U (g) von g. Eine einfache Antwort auf diese Frage hat man nur, wenn 9 kommutativ ist. Hier ist auch U(g) kommutativ, also entsprechen die Isomorphieklassen einfa- cher U (g)-Moduln eindeutig den maximal en Idealen in U (g). Da hier U (g) zur Algebra der polynomialen Funktionen auf dem Dualraum g* von 9 isomorph ist, werden diese maximalen Ideale nach dem schwachen Nullstellensatz durch die Punkte von g* klassifiziert. Jede irreduzible Darstellung von gist demnach eindimensional, jede Linearform auf 9 legt soleh eine Darstellung fest. Fur andere Lie-Algebren sind die Verhiiltnisse viel komplizierter. 1st 9 zum Beispiel einfach, so ist bisher nur fUr g=Glz eine Klassifikation der irreduzib- len Darstellungen bekannt (vorgelegt von R Block), die jedoch weit davon ent- femt ist, iihnlich explizit wie die im kommutativen Fall zu sein. Fur noch gro- Bere Lie-Algebren scheint selbst eine solehe Klassifikation nicht erreichbar zu sein. Es scheint daher sinnvoll, zuniichst ein einfacheres Problem zu losen, das im kommutativen Fall mit dem alten zusammenfiillt. Dies ist die Untersuchung der primitiven Ideale von U(g), das heiBt der Annullatoren in U(g) der einfa- chen U(g)-Moduln. Man mag hoffen, daraus auch Informationen uber die moglichen einfachen Moduln zu erhalten.

Product Details

ISBN-13: 9783642689567
Publisher: Springer Berlin Heidelberg
Publication date: 12/07/2011
Series: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics , #3
Edition description: Softcover reprint of the original 1st ed. 1983
Pages: 298
Product dimensions: 6.69(w) x 9.61(h) x 0.03(d)
Language: German

Table of Contents

1. Einhüllende Algebren.- 2. Halbeinfache Lie-Algebren.- 3. Zentralisatoren in Einhüllenden halbeinfacher Lie-Algebren.- 4. Moduln mit einem höchsten Gewicht.- 5. Annullatoren einfacher Moduln mit einem höchsten Gewicht.- 6. Harish-Chandra-Moduln.- 7. Primitive Ideale und Harish-Chandra-Moduln.- 8. Gel’fand-Kirillov-Dimension und Multiplizität.- 9. Die Multiplizität von Moduln in der Kategorie O.- 10. Gel’fand-Kirillov-Dimension von Harish-Chandra-Moduln.- 11. Lokalisierungen von Harish-Chandra-Moduln.- 12. Goldie-Rang und Kostants Problem.- 13. Schiefpolynomringe und der Übergang zu den m-Invarianten.- 14. Goldie-Rang-Polynome und Darstellungen der Weylgruppe.- 15. Induzierte Ideale und eine Vermutung von Gel’fand und Kirillov.- 16. Kazhdan-Lusztig-Polynome und spezielle Darstellungen der Weylgruppe.- 17. Assoziierte Varietäten.- Literatur.- Verzeichnis der Notationen.
From the B&N Reads Blog

Customer Reviews