Einstein's Essays in Science [NOOK Book]

Overview


His name is synonymous with "genius," but these essays by the renowned physicist and scholar are accessible to any reader. In addition to outlining the core of relativity theory in everyday language, Albert Einstein presents fascinating discussions of other scientific fields to which he made significant contributions. The Nobel Laureate also profiles some of history's most influential physicists, upon whose studies his own work was based.
Assembled during Einstein's lifetime ...
See more details below
Einstein's Essays in Science

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$6.99
BN.com price
(Save 12%)$7.95 List Price

Overview


His name is synonymous with "genius," but these essays by the renowned physicist and scholar are accessible to any reader. In addition to outlining the core of relativity theory in everyday language, Albert Einstein presents fascinating discussions of other scientific fields to which he made significant contributions. The Nobel Laureate also profiles some of history's most influential physicists, upon whose studies his own work was based.
Assembled during Einstein's lifetime from his speeches and essays, this book marks the first presentation to the wider world of the scientist's accomplishments in the field of abstract physics. Along with relativity theory, these articles examine the methods of theoretical physics, principles of research, and the concept of scientific truth. Einstein's speeches to audiences at Columbia University and the Prussian Academy of Science appear here, along with his insightful observations on such giants of science as Johannes Kepler, Sir Isaac Newton, James Clerk Maxwell, Niels Bohr, Max Planck, and others.
Read More Show Less

Product Details

  • ISBN-13: 9780486163529
  • Publisher: Dover Publications
  • Publication date: 12/12/2012
  • Sold by: Barnes & Noble
  • Format: eBook
  • Pages: 128
  • Sales rank: 734,496
  • File size: 618 KB

Meet the Author


In addition to conducting the research that culminated in his acclaimed theories of relativity, Albert Einstein (1879-1955) taught and lectured at universities around the world. Einstein received numerous awards and honorary doctorate degrees in science, medicine, and philosophy, and he remains a towering symbol of intellectual and imaginative achievement.

It's All Relative
Around 1950, Hayward Cirker, Founder and President of Dover Publications, wrote to Einstein and asked his approval to proceed with a Dover paperback reprint of the 1923 collection of original papers on relativity by Einstein himself and others (H. A. Lorentz, H. Weyl, and H. Minkowski), which had originally been published in England. Einstein was reluctant, wondering how much interest there could possibly be in this relic of his work from 30 or more years earlier. Cirker persisted, and Einstein finally agreed — the Dover edition of The Theory of Relativity has been in print ever since and has been followed by many other Dover books on relativity.

The papers reprinted in this original collection will always be for the serious student the cornerstone of their Einstein library: Michelson's Interference Experiment (H. A. Lorentz); Electromagnetic Phenomena in a System Moving with any Velocity Less Than That of Light (H.A. Lorentz); On the Electrodynamics of Moving Bodies (A. Einstein); Does the Inertia of a Body Depend Upon its Energy Content? (A. Einstein); Space and Time (H. Minkowksi with notes by A. Sommerfeld); On the Influence of Gravitation on the Propagation of Light (A. Einstein); and The Foundation of the General Theory of Relativity (A. Einstein) found on pages 109–164 of this text; Hamilton's Principle and The General Theory of Relativity (A. Einstein); Cosmological Considerations on the General Theory of Relativity (A. Einstein); Do Gravitational Fields Play an Essential Part in the Structure of the Elementary Particles of Matter? (A. Einstein); and Gravitation and Electricity (H. Weyl).

In the Author's Own Words:
"How can it be that mathematics, being after all a product of human thought independent of experience, is so admirably adapted to the objects of reality?"

"What nature demands from us is not a quantum theory or a wave theory; rather, nature demands from us a synthesis of these two views which thus far has exceeded the mental powers of physicists."

"Do not be troubled by your difficulties with Mathematics, I can assure you mine are much greater." — Albert Einstein

Critical Acclaim for The Theory of Relativity:
"This book constitutes an indispensable part of a library on relativity." — Nature

Read More Show Less

Read an Excerpt

Einstein's Essays in Science


By Albert Einstein, Alan Harris

Dover Publications, Inc.

Copyright © 2009 Dover Publications, Inc.
All rights reserved.
ISBN: 978-0-486-16352-9



CHAPTER 1

PRINCIPLES OF RESEARCH


IN THE temple of Science are many mansions, and various indeed are they that dwell therein and the motives that have led them thither. Many take to science out of a joyful sense of superior intellectual power; science is their own special sport to which they look for vivid experience and the satisfaction of ambition; many others are to be found in the temple who have offered the products of their brains on this altar for purely utilitarian purposes. Were an angel of the Lord to come and drive all the people belonging to these two categories out of the temple, it would be noticeably emptier, but there would still be some men, of both present and past times, left inside. Our Planck is one of them, and that is why we love him.

I am quite aware that we have just now light-heartedly expelled in imagination many excellent men who are largely, perhaps chiefly, responsible for the building of the temple of Science; and in many cases our angel would find it a pretty ticklish job to decide. But of one thing I feel sure: if the types we have just expelled were the only types there were, the temple would never have existed, any more than one can have a wood consisting of nothing but creepers. For these people any sphere of human activity will do, if it comes to a point; whether they become officers, tradesmen or scientists depends on circumstances. Now let us have another look at those who have found favor with the angel. Most of them are somewhat odd, uncommunicative, solitary fellows, really less like each other, in spite of these common characteristics, than the hosts of the rejected. What has brought them to the temple? That is a difficult question and no single answer will cover it. To begin with I believe with Schopenhauer that one of the strongest motives that lead men to art and science is escape from everyday life with its painful crudity and hopeless dreariness, from the fetters of one's own ever shifting desires. A finely tempered nature longs to escape from personal life into the world of objective perception and thought; this desire may be compared with the townsman's irresistible longing to escape from his noisy, cramped surroundings into the silence of high mountains, where the eye ranges freely through the still, pure air and fondly traces out the restful contours apparently built for eternity. With this negative motive there goes a personal one. Man tries to make for himself in the fashion that suits him best a simplified and intelligible picture of the world; he then tries to some extent to substitute this cosmos of his for the world of experience, and thus to overcome it. This is what the painter, the poet, the speculative philosopher and the natural scientist do, each in his own fashion. He makes this cosmos and its construction the pivot of his emotional life, in order to find in this way the peace and security which he cannot find in the narrow whirlpool of personal experience.

What place does the theoretical physicist's picture of the world occupy among all these possible pictures? It demands the highest possible standard of rigorous precision in the description of relations, such as only the use of mathematical language can give. In regard to his subject matter, on the other hand, the physicist has to limit himself very severely: he must content himself with describing the most simple events which can be brought within the domain of our experience; all events of a more complex order are beyond the power of the human intellect to reconstruct with the subtle accuracy and logical perfection which the theoretical physicist demands. Supreme purity, clarity and certainty at the cost of completeness. But what can be the attraction of getting to know such a tiny section of nature thoroughly, while one leaves everything subtler and more complex shyly and timidly alone? Does the product of such a modest effort deserve to be called by the proud name of a theory of the Universe?

In my belief the name is justified; for the general laws on which the structure of theoretical physics is based claim to be valid for any natural phenomenon whatsoever. With them, it ought to be possible to arrive at the description, that is to say, the theory, of every natural process, including life, by means of pure deduction, if that process of deduction were not far beyond the capacity of the human intellect. The physicist's renunciation of completeness for his cosmos is therefore not a matter of fundamental principle.

The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them. In this methodological uncertainty, one might suppose that there were any number of possible systems of theoretical physics all with an equal amount to be said for them; and this opinion is no doubt correct, theoretically. But evolution has shown that at any given moment, out of all conceivable constructions, a single one has always proved itself absolutely superior to all the rest. Nobody who has really gone deeply into the matter will deny that in practice the world of phenomena uniquely determines the theoretical system, in spite of the fact that there is no logical bridge between phenomena and their theoretical principles; this is what Leibnitz described so happily as a "pre-established harmony." Physicists often accuse epistemologists of not paying sufficient attention to this fact. Here, it seems to me, lie the roots of the controversy carried on some years ago between Mach and Planck.

The longing to behold this pre-established harmony is the source of the inexhaustible patience and endurance with which Planck has devoted himself, as we see, to the most general problems of our science, refusing to let himself be diverted to more grateful and more easily attained ends. I have often heard colleagues try to attribute this attitude of his to extraordinary will-power and discipline—wrongly, in my opinion. The state of mind which enables a man to do work of this kind is akin to that of the religious worshiper or the lover; the daily effort comes from no deliberate intention or program, but straight from the heart. There he sits, our beloved Planck, and smiles inside himself at my childish playing-about with the lantern of Diogenes. Our affection for him needs no threadbare explanation. May the love of science continue to illumine his path in the future and lead him to the solution of the most important problem in present-day physics, which he has himself posed and done so much to solve. May he succeed in uniting the quantum theory and electro-dynamics in a single logical system.


(Address on the occasion of Max Planck's sixtieth birthday delivered at the Physical Society in Berlin)

CHAPTER 2

INAUGURAL ADDRESS TO THE PRUSSIAN ACADEMY OF SCIENCES (1914)


Gentlemen,

First of all, I have to thank you most heartily for conferring the greatest benefit on me that anybody can confer on a man like myself. By electing me to your Academy you have freed me from the distractions and cares of a professional life and so made it possible for me to devote myself entirely to scientific studies. I beg that you will continue to believe in my gratitude and my industry even when my efforts seem to you to yield but a poor result.

Perhaps I may be allowed a propos of this to make a few general remarks on the relation of my sphere of activity, which is theoretical physics, towards experimental physics. A mathematician friend of mine said to me the other day half in jest: "The mathematician can do a lot of things, but never what you happen to want him to do just at the moment." Much the same often applies to the theoretical physicist when the experimental physicist calls him in. What is the reason for this peculiar lack of adaptability?

The theorist's method involves his using as his foundation general postulates or "principles" from which he can deduce conclusions. His work thus falls into two parts. He must first discover his principles and then draw the conclusions which follow from them. For the second of these tasks he receives an admirable equipment at school. Once, therefore, he has performed the first task in some department, or for some complex of related phenomena, he is certain of success, provided his industry and intelligence are adequate. The first of these tasks, namely, that of establishing the principles which are to serve as the starting point of his deduction, is of an entirely different nature. Here there is no method capable of being learned and systematically applied so that it leads to the goal. The scientist has to worm these general principles out of nature by perceiving certain general features which permit of precise formulation, amidst large complexes of empirical facts.

Once this formulation is successfully accomplished, inference follows on inference, often revealing relations which extend far beyond the province of the reality from which the principles were drawn. But as long as the principles capable of serving as starting points for the deduction remain undiscovered, the individual fact is of no use to the theorist; indeed he cannot even do anything with isolated empirical generalizations of more or less wide application. No, he has to persist in his helpless attitude towards the separate results of empirical research, until principles which he can make the basis of deductive reasoning have revealed themselves to him.

This is the kind of position in which theory finds itself at present in regard to the laws of heat, radiation, and molecular movement at low temperatures. About fifteen years ago nobody had yet doubted that a correct account of the electrical, optical and thermal properties of bodies was possible on the basis of Galileo-Newtonian mechanics applied to the movement of molecules and of Clerk Maxwell's theory of the electro-magnetic field. Then Planck showed that in order to establish a law of heat radiation consonant with experience, it was necessary to employ a method of calculation the incompatibility of which with the principles of classical physics became clearer and clearer. For with this method of calculation Planck introduced the quantum hypothesis into physics, which has since received brilliant confirmation. With this quantum hypothesis he dethroned classical physics as applied to the case where sufficiently small masses are moved at sufficiently low speeds and high rates of acceleration, so that today the laws of motion propounded by Galileo and Newton can only be allowed validity as limiting laws. In spite of assiduous efforts, however, the theorists have not yet succeeded in replacing the principles of mechanics by others which fit in with Planck's law of heat radiation or the quantum hypothesis. No matter how definitely it has been proved that heat is to be explained by molecular movement, we have nevertheless to admit today that our position in regard to the fundamental laws of this motion resembles that of astronomers before Newton in regard to the motions of the planets.

I have just now referred to a group of facts for the theoretical treatment of which the principles are lacking. But it may equally well happen that clearly formulated principles lead to conclusions which fall entirely, or almost entirely, outside the sphere of reality at present accessible to our experience. In that case it may need many years of empirical research to ascertain whether the theoretical principles correspond with reality. We have an instance of this in the theory of relativity.

An analysis of the fundamental concepts of space and time has shown us that the principle of the constant velocity of light in empty space, which emerges from the optics of bodies in motion, by no means forces us to accept the theory of a stationary luminiferous ether. On the contrary, there is nothing to prevent our framing a general theory which takes account of the fact that in experiments carried out on the earth we are wholly unconscious of the translatory motion of the earth. This involves using the principle of relativity, which says that the laws of nature do not alter their form when one proceeds from the original (legitimate) system of co-ordinates to a new one which is in uniform translatory motion with respect to it. This theory has received impressive confirmation from experience and has led to a simplification of the theoretical description of groups of facts already connected together.

On the other hand, from the theoretical point of view this theory is not wholly satisfactory, because the principle of relativity just formulated prefers uniform motion. If it is true that no absolute significance can be attached to uniform motion from the physical point of view, the question arises whether this statement must not also be extended to non-uniform motions. It became clear that one arrives at a quite definite enlargement of the relativity theory if one postulates a principle of relativity in this extended sense. One is led thereby to a general theory of gravitation which includes dynamics. For the present, however, we have not the necessary array of facts to test the legitimacy of our introduction of the postulated principle.

We have ascertained that inductive physics asks questions of deductive, and vice versa, to answer which demands the exertion of all our energies. May we soon succeed in making permanent progress by our united efforts!

CHAPTER 3

ON SCIENTIFIC TRUTH


(1) It is difficult even to attach a precise meaning to the term "scientific truth." So different is the meaning of the word "truth" according to whether we are dealing with a fact of experience, a mathematical proposition or a scientific theory. "Religious truth" conveys nothing clear to me at all.

(2) Scientific research can reduce superstition by encouraging people to think and survey things in terms of cause and effect. Certain it is that a conviction, akin to religious feeling, of the rationality or intelligibility of the world lies behind all scientific work of a higher order.

(3) This firm belief, a belief bound up with deep feeling, in a superior mind that reveals itself in the world of experience, represents my conception of God. In common parlance this may be described as "pantheistic" (Spinoza).

(4) Denominational traditions I can only consider historically and psychologically; they have no other significance for me.

CHAPTER 4

ON THE METHOD OF THEORETICAL PHYSICS


IF YOU want to find out anything from the theoretical physicists about the methods they use, I advise you to stick closely to one principle: don't listen to their words, fix your attention on their deeds. To him who is a discoverer in this field the products of his imagination appear so necessary and natural that he regards them, and would like to have them regarded by others, not as creations of thought but as given realities.

These words sound like an invitation to you to walk out of this lecture. You will say to yourselves, the fellow's a working physicist himself and ought therefore to leave all questions of the structure of theoretical science to the epistemologists.

Against such criticism I can defend myself from the personal point of view by assuring you that it is not at my own instance but at the kind invitation of others that I have mounted this rostrum, which serves to commemorate a man who fought hard all his life for the unity of knowledge. Objectively, however, my enterprise can be justified on the ground that it may, after all, be of interest to know how one who has spent a life-time in striving with all his might to clear up and rectify its fundamentals looks upon his own branch of science. The way in which he regards its past and present may depend too much on what he hopes for the future and aims at in the present; but that is the inevitable fate of anybody who has occupied himself intensively with a world of ideas. The same thing happens to him as to the historian, who in the same way, even though perhaps unconsciously, groups actual events around ideals which he has formed for himself on the subject of human society.

Let us now cast an eye over the development of the theoretical system, paying special attention to the relations between the content of the theory and the totality of empirical fact. We are concerned with the eternal antithesis between the two inseparable components of our knowledge, the empirical and the rational, in our department.

We reverence ancient Greece as the cradle of western science. Here for the first time the world witnessed the miracle of a logical system which proceeded from step to step with such precision that every single one of its propositions was absolutely indubitable—I refer to Euclid's geometry. This admirable triumph of reasoning gave the human intellect the necessary confidence in itself for its subsequent achievements. If Euclid failed to kindle your youthful enthusiasm, then you were not born to be a scientific thinker.


(Continues...)

Excerpted from Einstein's Essays in Science by Albert Einstein, Alan Harris. Copyright © 2009 Dover Publications, Inc.. Excerpted by permission of Dover Publications, Inc..
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents


PRINCIPLES OF RESEARCH
INAUGURAL ADDRESS TO THE PRUSSIAN ACADEMY OF SCIENCES
ON SCIENTIFIC TRUTH
ON THE METHOD OF THEORETICAL PHYSICS
JOHANNES KEPLER
THE MECHANICS OF NEWTON AND THEIR INFLUENCE ON THE DEVELOPMENT OF THEORETICAL PHYSICS
CLERK MAXWELL'S INFLUENCE ON THE EVOLUTION OF THE IDEA OF PHYSICAL REALITY
NIELS BOHR
WHAT IS THE THEORY OF RELATIVITY?
THE PROBLEM OF SPACE, ETHER, AND THE FIELD IN PHYSICS
NOTES ON THE ORIGIN OF THE GENERAL THEORY OF RELATIVITY
THE CAUSE OF THE FORMATION OF MEANDERS IN THE COURSES OF RIVERS AND OF THE SO-CALLED BEER'S LAW
THE FLETTNER SHIP
RELATIVITY AND THE ETHER
ADDRESS AT COLUMBIA UNIVERSITY
Read More Show Less

Customer Reviews

Average Rating 4
( 4 )
Rating Distribution

5 Star

(2)

4 Star

(0)

3 Star

(1)

2 Star

(1)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 4 Customer Reviews
  • Anonymous

    Posted July 18, 2013

    Xf

    Yes. The most remote spots are always the best for hunting.
    This place is pretty remote. No one's been here for several moons.
    I shapeshift into my personal favorite bird, a kestrel. My vision improves even more than it already was as a cat. I love hunting like this.
    After many, many heartbeats(an hour in twoleg time) my belt(the strange object I invented around my waist) is filled with two late nighting squirrels, three mice, five fish and one vole. The SunClan will eat like kings tommarrow morning. I bring the prey back.

    0 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted June 29, 2013

    Bluemoon

    "Sure." Her ears twitch. ((Brb. Updating bio.

    0 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted June 29, 2013

    MossMud

    "I'm not sure. Want to go back to camp?", he mews.

    0 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted July 16, 2013

    No text was provided for this review.

Sort by: Showing all of 4 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)