Electric Circuits (MasteringEngineering Series) / Edition 9

Hardcover (Print)
Rent from BN.com
(Save 54%)
Est. Return Date: 06/15/2014
Buy Used
Buy Used from BN.com
(Save 39%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $84.55
Usually ships in 1-2 business days
(Save 63%)
Other sellers (Hardcover)
  • All (21) from $84.55   
  • New (9) from $138.96   
  • Used (12) from $84.55   


Designed for use in a one or two-semester Introductory Circuit Analysis or Circuit Theory Course taught in Electrical or Computer Engineering Departments.

Electric Circuits 9/e is the most widely used introductory circuits textbook of the past 25 years. As this book has evolved over the years to meet the changing learning styles of students, importantly, the underlying teaching approaches and philosophies remain unchanged. The goals are:

- To build an understanding of concepts and ideas explicitly in terms of previous learning

- To emphasize the relationship between conceptual understanding and problem solving approaches

- To provide students with a strong foundation of engineering practices.

Read More Show Less

Editorial Reviews

A textbook for electrical engineering students that assumes a background in electrical physics and elementary differential and integral calculus. Material covered includes operational amplifiers, balanced three-phase circuits, sinusoidal steady-state analysis, the Laplace transform, frequency selective circuits, and the Fourier transform. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9780136114994
  • Publisher: Prentice Hall
  • Publication date: 1/15/2010
  • Series: MasteringEngineering Series
  • Edition description: Older Edition
  • Edition number: 9
  • Pages: 794
  • Sales rank: 474,957
  • Product dimensions: 8.70 (w) x 11.00 (h) x 1.40 (d)

Meet the Author

Professor JAMES W NILSSON taught at Iowa State University for 39 years. Since retiring from Iowa State, he has been a visiting professor at Notre Dame, California Polytechnic at San Luis Obispo, and the United States Air Force Academy. In 1962, he co-authored (with R.G. Brown) Introduction to Linear Systems Analysis (John Wiley & Sons). In 1968, he authored Introduction to Circuits, Instruments, and Electronics (Harcourt Brae and World). Professor Nilsson received a Standard Oil Outstanding Teacher Award in 1968, the IEEE Undergraduate Teaching Award in 1992, and the McGraw-Hill Jacob Millman Award in 1995. In 1990, he was elected to the rank of Fellow in the Institute of Electrical and Electronics Engineers.

Professor SUSAN A. RIEDEL has been a member of the Department of Electrical and Computer Engineering at Marquette University since 1981. She also holds a clinical research appointment in the Department of Orthopaedics at the Medical College of Wisconsin and was a visiting professor in the Bioengineering Unit at the University of Strathclyde, Glasgow, Scotland, as a Fulbright Scholar during the 1989-90 academic year. She has received two awards for teaching excellence at Marquette, and was recognized for her research contributions with an award from the Chicago Unit of the Shriner's Hospitals.

Read More Show Less

Table of Contents

List of Examples xiii

Preface xvii

Chapter 1 Circuit Variables 2

Practical Perspective: Balancing Power 3

1.1 Electrical Engineering: An Overview 4

1.2 The International System of Units 8

1.3 Circuit Analysis: An Overview 10

1.4 Voltage and Current 11

1.5 The Ideal Basic Circuit Element 12

1.6 Power and Energy 14

Practical Perspective: Balancing Power 17

Summary 18

Problems 19

Chapter 2 Circuit Elements 24

Practical Perspective: Electrical Safety 25

2.1 Voltage and Current Sources 26

2.2 Electrical Resistance (Ohm’s Law) 30

2.3 Construction of a Circuit Model 34

2.4 Kirchhoff’s Laws 37

2.5 Analysis of a Circuit Containing Dependent Sources 42

Practical Perspective: Electrical Safety 46

Summary 47

Problems 48

Chapter 3 Simple Resistive Circuits 56

Practical Perspective: A Rear Window Defroster 57

3.1 Resistors in Series 58

3.2 Resistors in Parallel 59

3.3 The Voltage-Divider and Current-DividerCircuits 61

3.4 Voltage Division and Current Division 64

3.5 Measuring Voltage and Current 66

3.6 Measuring Resistance—The Wheatstone Bridge 69

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits 71

Practical Perspective: A Rear Window Defroster 73

Summary 76

Problems 77

Chapter 4 Techniques of Circuit Analysis 88

Practical Perspective: Circuits with Realistic Resistors 89

4.1 Terminology 90

4.2 Introduction to the Node-Voltage Method 93

4.3 The Node-Voltage Method and Dependent Sources 95

4.4 The Node-Voltage Method: Some Special Cases 96

4.5 Introduction to the Mesh-Current Method 99

4.6 The Mesh-Current Method and Dependent Sources 102

4.7 The Mesh-Current Method: Some Special Cases 103

4.8 The Node-Voltage Method Versus the Mesh-Current Method 106

4.9 Source Transformations 109

4.10 Thévenin and Norton Equivalents 113

4.11 More on Deriving a Thévenin Equivalent 117

4.12 Maximum Power Transfer 120

4.13 Superposition 122

Practical Perspective: Circuits with Realistic Resistors 125

Summary 129

Problems 130

Chapter 5 The Operational Amplifier 144

Practical Perspective: Strain Gages 145

5.1 Operational Amplifier Terminals 146

5.2 Terminal Voltages and Currents 146

5.3 The Inverting-Amplifier Circuit 150

5.4 The Summing-Amplifier Circuit 152

5.5 The Noninverting-Amplifier Circuit 153

5.6 The Difference-Amplifier Circuit 155

5.7 A More Realistic Model for the Operational Amplifier 159

Practical Perspective: Strain Gages 162

Summary 164

Problems 165

Chapter 6 Inductance, Capacitance, and Mutual Inductance 174

Practical Perspective: Proximity Switches 175

6.1 The Inductor 176

6.2 The Capacitor 182

6.3 Series-Parallel Combinations of Inductance and Capacitance 187

6.4 Mutual Inductance 189

6.5 A Closer Look at Mutual Inductance 193

Practical Perspective: Proximity Switches 200

Summary 203

Problems 204

Chapter 7 Response of First-Order RL and RC Circuits 212

Practical Perspective: A Flashing Light Circuit 213

7.1 The Natural Response of an RL Circuit 214

7.2 The Natural Response of an RC Circuit 220

7.3 The Step Response of RL and RC Circuits 224

7.4 A General Solution for Step and Natural Responses 231

7.5 Sequential Switching 236

7.6 Unbounded Response 240

7.7 The Integrating Amplifier 241

Practical Perspective: A Flashing Light Circuit 245

Summary 246

Problems 247

Chapter 8 Natural and Step Responses of RLC Circuits 264

Practical Perspective: An Ignition Circuit 265

8.1 Introduction to the Natural Response of a Parallel RLC Circuit 266

8.2 The Forms of the Natural Response of a Parallel RLC Circuit 270

8.3 The Step Response of a Parallel RLC Circuit 280

8.4 The Natural and Step Response of a Series RLC Circuit 285

8.5 A Circuit with Two Integrating Amplifiers 289

Practical Perspective: An Ignition Circuit 294

Summary 297

Problems 298

Chapter 9 Sinusoidal Steady-State Analysis 306

Practical Perspective: A Household Distribution Circuit 307

9.1 The Sinusoidal Source 308

9.2 The Sinusoidal Response 311

9.3 The Phasor 312

9.4 The Passive Circuit Elements in the Frequency Domain 317

9.5 Kirchhoff’s Laws in the Frequency Domain 321

9.6 Series, Parallel, and Delta-to-Wye Simplifications 322

9.7 Source Transformations and Thévenin-Norton Equivalent Circuits 329

9.8 The Node-Voltage Method 332

9.9 The Mesh-Current Method 333

9.10 The Transformer 334

9.11 The Ideal Transformer 338

9.12 Phasor Diagrams 344

Practical Perspective: A Household Distribution Circuit 346

Summary 347

Problems 348

Chapter 10 Sinusoidal Steady-State Power Calculations 360

Practical Perspective: Heating Appliances 361

10.1 Instantaneous Power 362

10.2 Average and Reactive Power 363

10.3 The rms Value and Power Calculations 368

10.4 Complex Power 370

10.5 Power Calculations 371

10.6 Maximum Power Transfer 378

Practical Perspective: Heating Appliances 384

Summary 386

Problems 387

Chapter 11 Balanced Three-Phase Circuits 398

Practical Perspective: Transmission and Distribution of Electric Power 399

11.1 Balanced Three-Phase Voltages 400

11.2 Three-Phase Voltage Sources 401

11.3 Analysis of the Wye-Wye Circuit 402

11.4 Analysis of the Wye-Delta Circuit 407

11.5 Power Calculations in Balanced Three-Phase Circuits 410

11.6 Measuring Average Power in Three-Phase Circuits 415

Practical Perspective: Transmission and Distribution of Electric Power 418

Summary 419

Problems 420

Chapter 12 Introduction to the Laplace Transform 428

Practical Perspective: Transient Effects 429

12.1 Definition of the Laplace Transform 430

12.2 The Step Function 431

12.3 The Impulse Function 433

12.4 Functional Transforms 436

12.5 Operational Transforms 437

12.6 Applying the Laplace Transform 442

12.7 Inverse Transforms 444

12.8 Poles and Zeros of F(s) 454

12.9 Initial- and Final-Value Theorems 455

Practical Perspective: Transient Effects 458

Summary 459

Problems 460

Chapter 13 The Laplace Transform in Circuit Analysis 466

Practical Perspective: Surge Suppressors 467

13.1 Circuit Elements in the s Domain 468

13.2 Circuit Analysis in the s Domain 470

13.3 Applications 472

13.4 The Transfer Function 484

13.5 The Transfer Function in Partial Fraction Expansions 486

13.6 The Transfer Function and the Convolution Integral 489

13.7 The Transfer Function and the Steady-State Sinusoidal Response 495

13.8 The Impulse Function in Circuit Analysis 498

Practical Perspective: Surge Suppressors 505

Summary 506

Problems 507

Chapter 14 Introduction to Frequency Selective Circuits 522

Practical Perspective: Pushbutton Telephone Circuits 523

14.1 Some Preliminaries 524

14.2 Low-Pass Filters 526

14.3 High-Pass Filters 532

14.4 Bandpass Filters 536

14.5 Bandreject Filters 545

Practical Perspective: Pushbutton Telephone Circuits 550

Summary 550

Problems 551

Chapter 15 Active Filter Circuits 558

Practical Perspective: Bass Volume Control 559

15.1 First-Order Low-Pass and High-Pass Filters 560

15.2 Scaling 564

15.3 Op Amp Bandpass and Bandreject Filters 566

15.4 Higher Order Op Amp Filters 573

15.5 Narrowband Bandpass and Bandreject Filters 586

Practical Perspective: Bass Volume Control 591

Summary 594

Problems 595

Chapter 16 Fourier Series 604

Practical Perspective: Active High-Q Filters 605

16.1 Fourier Series Analysis: An Overview 607

16.2 The Fourier Coefficients 608

16.3 The Effect of Symmetry on the Fourier Coefficients 611

16.4 An Alternative Trigonometric Form of the Fourier Series 617

16.5 An Application 619

16.6 Average-Power Calculations with Periodic Functions 623

16.7 The rms Value of a Periodic Function 626

16.8 The Exponential Form of the Fourier Series 627

16.9 Amplitude and Phase Spectra 630

Practical Perspective: Active High-Q Filters 632

Summary 634

Problems 635

Chapter 17 The Fourier Transform 644

Practical Perspective: Filtering Digital Signals 645

17.1 The Derivation of the Fourier Transform 646

17.2 The Convergence of the Fourier Integral 648

17.3 Using Laplace Transforms to Find Fourier Transforms 650

17.4 Fourier Transforms in the Limit 653

17.5 Some Mathematical Properties 655

17.6 Operational Transforms 657

17.7 Circuit Applications 661

17.8 Parseval’s Theorem 664

Practical Perspective: Filtering Digital Signals 671

Summary 672

Problems 672

Chapter 18 Two-Port Circuits 678

Practical Perspective: Characterizing an Unknown Circuit 679

18.1 The Terminal Equations 680

18.2 The Two-Port Parameters 681

18.3 Analysis of the Terminated Two-Port Circuit 689

18.4 Interconnected Two-Port Circuits 694

Practical Perspective: Characterizing an Unknown Circuit 697

Summary 698

Problems 698

Appendix A The Solution of Linear Simultaneous Equations 705

A.1 Preliminary Steps 705

A.2 Cramer’s Method 706

A.3 The Characteristic Determinant 706

A.4 The Numerator Determinant 706

A.5 The Evaluation of a Determinant 707

A.6 Matrices 709

A.7 Matrix Algebra 710

A.8 Identity, Adjoint, and Inverse Matrices 714

A.9 Partitioned Matrices 717

A.10 Applications 720

Appendix B Complex Numbers 725

B.1 Notation 725

B.2 The Graphical Representation of a Complex Number 726

B.3 Arithmetic Operations 727

B.4 Useful Identities 728

B.5 The Integer Power of a Complex Number 729

B.6 The Roots of a Complex Number 729

Appendix C More on Magnetically Coupled Coils and Ideal Transformers 731

C.1 Equivalent Circuits for Magnetically Coupled Coils 731

C.2 The Need for Ideal Transformers in the Equivalent Circuits 735

Appendix D The Decibel 739

Appendix E Bode Diagrams 741

E.1 Real, First-Order Poles and Zeros 741

E.2 Straight-Line Amplitude Plots 742

E.3 More Accurate Amplitude Plots 746

E.4 Straight-Line Phase Angle Plots 747

E.5 Bode Diagrams: Complex Poles and Zeros 749

E.6 Amplitude Plots 751

E.7 Correcting Straight-Line Amplitude Plots 752

E.8 Phase Angle Plots 755

Appendix F An Abbreviated Table of Trigonometric Identities 759

Appendix G An Abbreviated Table of Integrals 761

Appendix H Common Standard Component Values 763

Answers to Selected Problems 765

Index 781

Read More Show Less



The sixth edition of Electric Circuits is an incremental revision to the most widely used introductory circuits text of the past fifteen years. Importantly, the underlying teaching approaches and philosophies remain unchanged. The goals are:

  • To build an understanding of concepts and ideas explicitly in terms of previous learning. The learning challenges faced by students of engineering circuit analysis are prodigious; each new concept is built on a foundation of many other concepts. In Electric Circuits, much attention is paid to helping students recognize how new concepts and ideas fit together with those previously learned.
  • To emphasize the relationship between conceptual understanding and problem-solving approaches. Developing the students' problem-solving skills continues to be the central challenge in this course. To address this challenge, Electric Circuits uses examples and simple drill exercises to demonstrate problem-solving approaches and to offer students practice opportunities. We do so not with the primary aim of giving students procedural models for solving problems; rather, we emphasize problem solving as a thought process in which one applies conceptual understanding to the solution of a practical problem. As such, in both the textual development and in the worked-out examples, we place great emphasis on a problem-solving process based on concepts rather than the use of rote procedures. Students are encouraged to think through problems before attacking them, and we often pause to consider the broader implications of a specific problem-solving situation.
  • To provide students witha strong foundation of engineering practices. There are limited opportunities in a sophomore-year circuit analysis course to introduce students to real-world engineering experiences. We continue to emphasize the opportunities that do exist by making a strong effort to develop problems and exercises that use realistic values and represent realizable physical situations. We have included many application-type problems and exercises to help stimulate students' interest, in engineering. Many of these problems require the kind of insight an engineer is expected to display when solving problems.


We have come to regard each revision of Electric Circuits as an opportunity to make improvements in the book, many of which are based on suggestions from our colleagues and our students. The sixth edition of Electric Circuits continues to support the major learning styles of students in the 1990s as well as to support the major teaching challenges these students present. We increased our focus on motivating the students with examples of practical circuits they have encountered and may have been curious about, and provide more explicit direction in the text for using computer tools such as PSpice and MATLAB to support the study of circuit analysis. The major areas of change are as follows:

Content and Organizational Changes

The most significant change to the sixth edition is the elimination of a separate chapter on mutually coupled coils, with the material being integrated into other chapters. This allows us to present the time-domain equations for mutually-coupled coils as a simple extension of the time domain equations for single inductors in an attempt to "de-mystify" mutually-coupled coils. The applications of mutual coupling, namely linear and ideal transformers, come later, once phasor techniques have been presented. The modifications are summarized as follows:

  • The introductory material on mutually-coupled coils, including the time-domain equations and a presentation of the dot convention, has been moved to Chapter 6, which is now entitled "Inductance, Capacitance, and Mutual Inductance".
  • The Practical Perspective relating to mutual inductance has been moved to Chapter 8, as this material can be presented once the natural and step response to second-order circuits has been covered.
  • The material on linear and ideal transformers has been added to Chapter 9, after the phasor techniques have been developed. Chapter problems exploring transformers have been added to Chapter 9, while problems dealing with power and transformers have been added to Chapter 10.
  • Chapters 13-19 in the fifth edition have been renumbered as Chapters 12-18 in the sixth edition.
  • The material describing the design of active broadband bandpass and bandreject filters using combinations of active low-pass and high-pass filters in Chapter 15 has been revised and expanded.
  • The material pertaining to pi- and tee-equivalent circuits for mutually-coupled coils and the need for ideal transformers in certain equivalent circuits has become Appendix C. The material covering circuit topology, which was in Appendix C in the fifth edition, has been eliminated.

Practical Perspectives

The fifth edition of Electric Circuits introduced six Practical Perspectives that offered examples of real-world circuits, taken from realworld devices such as telephones, hair dryers, and automobiles. The sixth edition doubles the number of Practical Perspectives, adding them to Chapters 4, 5, 7, 8, 9, and 15. Now, a total of twelve chapters begin with a brief description of a practical application of the material to follow. Once the chapter material is presented, the chapter concludes with a quantitative analysis of the application. Several problems pertaining to the Practical Perspective are included in the chapter problems and are identified with a diamond icon. The Practical Perspectives are designed to stimulate students' interest in applying circuit analysis to the design of useful circuits and devices, and to consider some of the complexities associated with making a working circuit.

Integration of Computer Tools

Computer tools cannot replace the traditional methods for mastering the study of electric circuits. They can, however, assist students in the learning process by providing a visual representation of a circuit's behavior, validating a calculated solution, reducing the computational burden of more complex circuits, and iterating toward a desired solution using parameter variation. This computational support is often invaluable in the design process.

The sixth edition merges the support for two popular computer tools, PSpice and MATLAB, into the main text with the addition of icons identifying chapter problems suited for exploration with one or both of these tools. The icon (P) identifies those problems to investigate with PSpice, while the icon (M) identifies problems to investigate with MATLAB. Instructors are provided with computer files containing the PSpice or MATLAB simulation of the problems so marked.


We continue to support the emphasis on design of circuits in several ways. First, several of the new practical perspective discussions focus on the design aspects of the circuits. The accompanying chapter problems continue the discussion of the design issues in these practical examples. Second, design oriented chapter problems have been explicitly labeled with a four-diamond icon, enabling students and instructors to identify those problems with a design focus. Third, the identification of problems suited to exploration with PSpice or MATLAB suggests design opportunities using one or both of these computer tools.

Text Design and Pedagogical Features

The sixth edition continues the successful design introduced in the fifth edition, including the following features:

  • Practical Perspective introductions are located opposite twelve chapter opening pages and are highlighted with a second-color background.
  • Practical Perspective examples at the end of these twelve chapters are set apart in an easy-to-identify separate section.
  • Practical Perspective problems in the Chapter Problem sets are indicated with a diamond icon for easy reference.
  • Key terms are set in boldface when they are first defined. They also appear in boldface in the chapter summaries. This makes it easier for students to find the definitions of important terms.
  • Design problems in the Chapter Problem sets are indicated with a four-diamond icon for easy reference.
  • PSpice problems in the Chapter Problem sets are indicated with a (P) icon for easy reference.
  • MATLAB problems in the Chapter Problem sets are indicated with a (M) icon for easy reference.


Solved Numerical Examples

Solved numerical examples are used extensively throughout the text to help students understand how theory is applied to circuit analysis. Because many students value worked examples more than any other aspect of the text, these examples represent an important opportunity to influence the development of student's problem-solving behavior. The nature and format of the examples in Electric Circuits are a reflection of the overall teaching approach of the text. When presenting a solution, we place great emphasis on the importance of problem solving as a thought process that applies underlying concepts, as we discussed earlier. By emphasizing this idea – even in the solution of simple problems – we hope to communicate that this approach to problem solving can help students handle the more complex problems they will encounter later on. Some characteristics of the examples include:

  • encouraging the student to study the problem or the circuit and to make initial observations before diving into a solution pathway;
  • emphasizing the individual stages of the solution as part of solving the problem systematically, without suggesting that there are rote procedures for problem solving;
  • exploring decision making, that is, the idea that we are often faced with choosing among many different solution approaches; and
  • suggesting that students challenge their results by emphasizing the importance of checking and testing answers based on their knowledge of circuit theory and the real world.

Drill Exercises

Drill exercises are included in the text to give students an opportunity to test their understanding of the material they have just read. The drill exercises are presented in a double-column format as a way of signaling to students that they should stop and solve the exercises before proceeding to the next section. Nearly half of the drill exercises are new or revised.

Homework Problems

Users of Electric Circuits have consistently rated the homework problems as one of the book's most attractive features. In the sixth edition, there are nearly 1000 problems. The problems are designed around the following objectives (in parentheses are the corresponding problem categories identified in the Instructor's Manual and an illustrative problem number):

  • To give students practice in using the analytical techniques developed in the text (Practice; see Problem 4.7)
  • To show students that analytical techniques are tools, not objectives (Analytical Tool; see Problem 4.2)
  • To give students practice in choosing the analytical method to be used in obtaining a solution (Open Method; see Problem 4.49)
  • To show students how the results from one solution can be used to find other information about a circuit's operation (Additional Information; see Problem 4.76)
  • To encourage students to challenge the solution either by using an alternate method or by testing the solution to see if it makes sense in terms of known circuit behavior (Solution Check; see Problem 4.52)
  • To introduce students to design oriented problems (Design; see Problem 10.66)
  • To give students practice in deriving and manipulating equations where quantities of interest are expressed as functions of circuit variables such as R, L, C, co, and so forth; this type of problem also supports the design process (Derivation; see Problem 9.27)
  • To challenge students with problems that will stimulate their interest in both electrical and computer engineering (Practical; see Problem 3.68)


In writing the first twelve chapters of the text, we have assumed that the reader has taken a course in elementary differential and integral calculus. We have also assumed that the reader has had an introductory physics course, at either the high school or university level, that introduces the concepts of energy, power, electric charge, electric current, electric potential, and electromagnetic fields. In writing the final six chapters, we have assumed the student has had, or is enrolled in, an introductory course in differential equations.


The text has been designed for use in a one-semester, two-semester or a three-quarter sequence.

  • Single-semester course: After covering Chapters 1-4 and Chapters 6-10 (omitting Sections 7.7 and 8.5) the instructor can choose from Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits), Chapters 13 and 14 (Laplace methods), and Chapter 18 (Two-Port Circuits) to develop the desired emphasis.
  • Two-semester sequence: Assuming three lectures per week, the first nine chapters can be covered during the first semester, leaving Chapters 10-18 for the second semester.
  • Academic quarter schedule: The book can be subdivided into three parts: Chapters 1-6, Chapters 7-12, and Chapters 13-18.

The introduction to operational amplifier circuits can be omitted without interference by the reader going to the subsequent chapters. For example, if Chapter 5 is omitted, the instructor can simply skip Section 7.7, Section 8.5, Chapter 15, and those problems and drill exercises in the chapters following Chapter 5 that pertain to operational amplifiers.

There are several appendixes at the end of the book to help readers make effective use of their mathematical background. Appendix A reviews Cramer's method of solving simultaneous linear equations and simple matrix algebra; complex numbers are reviewed in Appendix B; Appendix C contains additional material on mutually-coupled coils and ideal transformers; Appendix D contains a brief discussion of the decibel; Appendix E is devoted to an abbreviated table of trigonometric identities that are useful in circuit analysis; and an abbreviated table of useful integrals is given in Appendix F.

On page xvii there is a comprehensive list of the examples with titles and corresponding page numbers.


We have put effort into the development of supplements that capitalize and extend the many strengths of the sixth edition. Students and professors are constantly challenged in terms of time and energy by the confines of the classroom and the importance of integrating new information and technologies into an electric circuits course. Through the following supplements, we believe we have succeeded in making some of these challenges more manageable.

PSpice for Electric Circuits

This supplement is published as a separate booklet, to facilitate its use at a computer. It has been revised extensively from the fifth edition, most importantly to eliminate the "programming language" aspect of the original Spice. Now, circuits are described to PSpice using a circuit schematic, and techniques for developing such schematics are presented in the supplement. This supplement continues to present topics in PSpice in the same order as those topics are presented in the text, so the content has undergone minor revision to reflect the revisions in the text.

Instructor's Manual

The Instructor's Manual enables professors to orient themselves quickly to this text and the supplement package. For easy reference, the following information is organized for each chapter:

  • a chapter overview
  • problem categorizations
  • problem references by chapter section
  • a list of examples

Solutions Manual

The solutions manual contains solutions with supporting figures to all of the 900-plus end-of-chapter problems in the sixth edition. Volume I covers Chapters 1-9, and Volume II covers Chapters 11-18. These supplements, available free to all adopting faculty, were checked for accuracy by several instructors. The manuals are not available for sale to students. A disk containing files for PSpice solution and MATLAB solution for all indicated problems is attached to the solutions manual.


We continue to express our appreciation for the contributions of Norman Wittels of Worcester Polytechnic Institute. His contributions to the Practical Perspectives greatly enhanced both this edition and the previous one.

There were many hard-working people behind the scenes at both of our publishers who deserve our thanks and gratitude for their efforts on behalf of the sixth edition. At Addison-Wesley, we would like to thank Paul Becker, Anna Eberhard Friedlander, and Royden Tonamura, and hope that they are proud of the finished product. At Prentice Hall, we thank Tom Robbins and Scott Disanno, who eased the transition to our new publisher with humor, graciousness, understanding, and a ton of really hard work.

The many revisions of the text were guided by careful and thorough reviews from professors. Our heartfelt thanks to Bill Eccles, Rose-Hulman Institute; Major Bob Yahn, US Air Force; Thomas Schubert, University of San Diego; Norman Wittles, WPI; Mahmoud A. Abdallah, Central State University; Nadipuram (Ram) Prasad, New Mexico State University; Terry Martin, University of Arkansas; Belle Shenoi, Wright State University; Nurgun Erdol, Florida Atlantic University; Ezz I. El-Masry, DalTech Dalhouise University; John Naber, University of Louisville; Charles P Neuman, Camegie Mellon University; David Grow, South Dakota School of Mines and Technology; Dan Moore, Rose-Hulman Institute.

Susan would like to thank Professor James Nilsson for the opportunity to share the work and the rewards of Electric Circuits. She doesn't know a more patient, gracious, and hard-working person, and she continues to learn from him in the process of each revision. Thanks also to her team teachers and colleagues, Susan Schneider and Jeff Hock, who help her to stay focused and sane. Thanks to the sophomore classes of 1997-98 and 1998-99 in Electrical Engineering at Marquette University who helped her rewrite many of the Chapter Problems, often unknowingly. Most important, she thanks her sons David and Jason, who continue to tolerate the long hours and the late meals, and give her hugs when she needs to be re-energized.

James would like to thank Susan for accepting the challenge of becoming a coauthor of Electric Circuits. Her willingness to suggest both pedagogical and content changes and at the same time graciously accept constructive criticism when offered has made the transition to the fifth and sixth editions possible. She brings to the text an expertise in computer use and a genuine interest in and enthusiasm for teaching.

James also thanks Robert Yahn (USAF) and Stephen O'Conner (USAF) for their continued interest in the book. He thanks Professor emeriti Thomas Scott and C. J. Triska at Iowa State University who continue to make valuable suggestions concerning the content and pedagogy of the text. Finally, he acknowledges the cooperation of Jacob Chacko, a transmission and distribution engineer at the Ames Municipal Electric System.

Read More Show Less

Customer Reviews

Average Rating 3.5
( 11 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 9 Customer Reviews
  • Posted October 5, 2010

    Thumbs up

    I agree this text book on Electric Circuits is very well written. Reader must have a prerequiste in calculus to do the problems. Access to the Solution Manually would be highly effective.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted October 2, 2003

    This book is alright, but not the best

    I would recommend this book for graduate students who would like to review their knowledge, but not for students who just starting to learn electrical engineering. The wording in this book is not very clear and difficult to catch on. I do agree with the first commend that there are not enough examples and to short explanations. Also an answer key would be nice as well. If you have the basic knowledge about electrical science, this book is good, but for starters, look for something else. If you get stuck with this book I would recommend the Schaumm's Outline for electric circuits. This will give you some help. This is not only my own opinion, but also the opinion of my teacher and some other electrical engineers who have been teaching at universities around the globe.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted October 20, 2003


    terrible book... there is no way you can practice the problems..because they dont have answer to any practice problems... so when u prepare for the exam you dont know wheather the problems you practiced are right or wrong... so next time try putting answers there... not asking to work them out but only answer to check ourselves

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted July 2, 2003


    This is the greatest book ever written in circuit theory. Without any doubts I can say the author knows the concept very well. He is precise, to the point and explains the material elegantly.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 8, 2003

    Its not too bad

    I agree that this book does not have many examples as in the other books. That is the major draw back. I would really suggest the author(s) to have more examples. However, the theory part has been laid out very well. It is one of the better books for understanding theory. And it is definately better than the book by Irwin.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted February 18, 2003


    Who ever wrote the previous review doesn't know what they are talking about! This book is great. It does an great job of explaining the material. I give it an A+!

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted October 24, 2002

    One word: Terrible!

    This has got to be the most horrific book I've ever used. Too bad that the rating scale doesn't go below zero stars. For a VERY difficult class, this book doesn't do the job of symplifying the materials. It's explanations are too short and leaves a lot of guess work to the student. Don't even get me started on the problems at the end of each chapter - they're almost impossible and we don't even have the answers to see if we are correct or not. The examples given within the context of the chapters are trivial compared to the problems given at the end. I know that it comes with a PSPICE program for us to work with, but me and every other engineering student is very pressed for time, having one or more exam almost every other week. Please, Mr. Nilsson and Mrs. Riedel, for your next edition, have in mind the ordinary engineering student and PLEASE more detail into the examples and PLEASE give examples that reflect the problems at the end of each chapter. And PLEASE include the answers in the back so that we may check ourselves. I've even contemplated leaving electrical engineering all together after taking this class. So please, write a better text book for the 7th edition.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted March 13, 2000


    This is a great text, but i was wondering if there is a solution's manual.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted August 11, 2011

    No text was provided for this review.

Sort by: Showing all of 9 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)