Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

Brand New Text!!! Never Been Used!!! Edges barely worn. Barely shelfwear. This text is totally clean with no writing at all!!! Includes Unopened Access Code!!!

Designed for use in a one or two-semester Introductory Circuit Analysis or Circuit Theory Course taught in Electrical or Computer Engineering Departments.

Electric Circuits 9/e is the most widely used introductory circuits textbook of the past 25 years. As this book has evolved over the years to meet the changing learning styles of students, importantly, the underlying teaching approaches and philosophies remain unchanged. The goals are:

- To build an understanding of concepts and ideas explicitly in terms of previous learning

- To emphasize the relationship between conceptual understanding and problem solving approaches

- To provide students with a strong foundation of engineering practices.

A textbook for electrical engineering students that assumes a background in electrical physics and elementary differential and integral calculus. Material covered includes operational amplifiers, balanced three-phase circuits, sinusoidal steady-state analysis, the Laplace transform, frequency selective circuits, and the Fourier transform. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Professor JAMES W NILSSON taught at Iowa State University for 39 years. Since retiring from Iowa State, he has been a visiting professor at Notre Dame, California Polytechnic at San Luis Obispo, and the United States Air Force Academy. In 1962, he co-authored (with R.G. Brown) Introduction to Linear Systems Analysis (John Wiley & Sons). In 1968, he authored Introduction to Circuits, Instruments, and Electronics (Harcourt Brae and World). Professor Nilsson received a Standard Oil Outstanding Teacher Award in 1968, the IEEE Undergraduate Teaching Award in 1992, and the McGraw-Hill Jacob Millman Award in 1995. In 1990, he was elected to the rank of Fellow in the Institute of Electrical and Electronics Engineers.

Professor SUSAN A. RIEDEL has been a member of the Department of Electrical and Computer Engineering at Marquette University since 1981. She also holds a clinical research appointment in the Department of Orthopaedics at the Medical College of Wisconsin and was a visiting professor in the Bioengineering Unit at the University of Strathclyde, Glasgow, Scotland, as a Fulbright Scholar during the 1989-90 academic year. She has received two awards for teaching excellence at Marquette, and was recognized for her research contributions with an award from the Chicago Unit of the Shriner's Hospitals.

The sixth edition of Electric Circuits is an incremental revision to the most widely used introductory circuits text of the past fifteen years. Importantly, the underlying teaching approaches and philosophies remain unchanged. The goals are:

To build an understanding of concepts and ideas explicitly in terms of previous learning. The learning challenges faced by students of engineering circuit analysis are prodigious; each new concept is built on a foundation of many other concepts. In Electric Circuits, much attention is paid to helping students recognize how new concepts and ideas fit together with those previously learned.

To emphasize the relationship between conceptual understanding and problem-solving approaches. Developing the students' problem-solving skills continues to be the central challenge in this course. To address this challenge, Electric Circuits uses examples and simple drill exercises to demonstrate problem-solving approaches and to offer students practice opportunities. We do so not with the primary aim of giving students procedural models for solving problems; rather, we emphasize problem solving as a thought process in which one applies conceptual understanding to the solution of a practical problem. As such, in both the textual development and in the worked-out examples, we place great emphasis on a problem-solving process based on concepts rather than the use of rote procedures. Students are encouraged to think through problems before attacking them, and we often pause to consider the broader implications of a specific problem-solving situation.

To provide students witha strong foundation of engineering practices. There are limited opportunities in a sophomore-year circuit analysis course to introduce students to real-world engineering experiences. We continue to emphasize the opportunities that do exist by making a strong effort to develop problems and exercises that use realistic values and represent realizable physical situations. We have included many application-type problems and exercises to help stimulate students' interest, in engineering. Many of these problems require the kind of insight an engineer is expected to display when solving problems.

WHAT'S NEW IN THE SIXTH EDITION

We have come to regard each revision of Electric Circuits as an opportunity to make improvements in the book, many of which are based on suggestions from our colleagues and our students. The sixth edition of Electric Circuits continues to support the major learning styles of students in the 1990s as well as to support the major teaching challenges these students present. We increased our focus on motivating the students with examples of practical circuits they have encountered and may have been curious about, and provide more explicit direction in the text for using computer tools such as PSpice and MATLAB to support the study of circuit analysis. The major areas of change are as follows:

Content and Organizational Changes

The most significant change to the sixth edition is the elimination of a separate chapter on mutually coupled coils, with the material being integrated into other chapters. This allows us to present the time-domain equations for mutually-coupled coils as a simple extension of the time domain equations for single inductors in an attempt to "de-mystify" mutually-coupled coils. The applications of mutual coupling, namely linear and ideal transformers, come later, once phasor techniques have been presented. The modifications are summarized as follows:

The introductory material on mutually-coupled coils, including the time-domain equations and a presentation of the dot convention, has been moved to Chapter 6, which is now entitled "Inductance, Capacitance, and Mutual Inductance".

The Practical Perspective relating to mutual inductance has been moved to Chapter 8, as this material can be presented once the natural and step response to second-order circuits has been covered.

The material on linear and ideal transformers has been added to Chapter 9, after the phasor techniques have been developed. Chapter problems exploring transformers have been added to Chapter 9, while problems dealing with power and transformers have been added to Chapter 10.

Chapters 13-19 in the fifth edition have been renumbered as Chapters 12-18 in the sixth edition.

The material describing the design of active broadband bandpass and bandreject filters using combinations of active low-pass and high-pass filters in Chapter 15 has been revised and expanded.

The material pertaining to pi- and tee-equivalent circuits for mutually-coupled coils and the need for ideal transformers in certain equivalent circuits has become Appendix C. The material covering circuit topology, which was in Appendix C in the fifth edition, has been eliminated.

Practical Perspectives

The fifth edition of Electric Circuits introduced six Practical Perspectives that offered examples of real-world circuits, taken from realworld devices such as telephones, hair dryers, and automobiles. The sixth edition doubles the number of Practical Perspectives, adding them to Chapters 4, 5, 7, 8, 9, and 15. Now, a total of twelve chapters begin with a brief description of a practical application of the material to follow. Once the chapter material is presented, the chapter concludes with a quantitative analysis of the application. Several problems pertaining to the Practical Perspective are included in the chapter problems and are identified with a diamond icon. The Practical Perspectives are designed to stimulate students' interest in applying circuit analysis to the design of useful circuits and devices, and to consider some of the complexities associated with making a working circuit.

Integration of Computer Tools

Computer tools cannot replace the traditional methods for mastering the study of electric circuits. They can, however, assist students in the learning process by providing a visual representation of a circuit's behavior, validating a calculated solution, reducing the computational burden of more complex circuits, and iterating toward a desired solution using parameter variation. This computational support is often invaluable in the design process.

The sixth edition merges the support for two popular computer tools, PSpice and MATLAB, into the main text with the addition of icons identifying chapter problems suited for exploration with one or both of these tools. The icon (P) identifies those problems to investigate with PSpice, while the icon (M) identifies problems to investigate with MATLAB. Instructors are provided with computer files containing the PSpice or MATLAB simulation of the problems so marked.

DESIGN EMPHASIS

We continue to support the emphasis on design of circuits in several ways. First, several of the new practical perspective discussions focus on the design aspects of the circuits. The accompanying chapter problems continue the discussion of the design issues in these practical examples. Second, design oriented chapter problems have been explicitly labeled with a four-diamond icon, enabling students and instructors to identify those problems with a design focus. Third, the identification of problems suited to exploration with PSpice or MATLAB suggests design opportunities using one or both of these computer tools.

Text Design and Pedagogical Features

The sixth edition continues the successful design introduced in the fifth edition, including the following features:

Practical Perspective introductions are located opposite twelve chapter opening pages and are highlighted with a second-color background.

Practical Perspective examples at the end of these twelve chapters are set apart in an easy-to-identify separate section.

Practical Perspective problems in the Chapter Problem sets are indicated with a diamond icon for easy reference.

Key terms are set in boldface when they are first defined. They also appear in boldface in the chapter summaries. This makes it easier for students to find the definitions of important terms.

Design problems in the Chapter Problem sets are indicated with a four-diamond icon for easy reference.

PSpice problems in the Chapter Problem sets are indicated with a (P) icon for easy reference.

MATLAB problems in the Chapter Problem sets are indicated with a (M) icon for easy reference.

EXAMPLES, DRILL EXERCISES, AND HOMEWORK PROBLEMS

Solved Numerical Examples

Solved numerical examples are used extensively throughout the text to help students understand how theory is applied to circuit analysis. Because many students value worked examples more than any other aspect of the text, these examples represent an important opportunity to influence the development of student's problem-solving behavior. The nature and format of the examples in Electric Circuits are a reflection of the overall teaching approach of the text. When presenting a solution, we place great emphasis on the importance of problem solving as a thought process that applies underlying concepts, as we discussed earlier. By emphasizing this idea even in the solution of simple problems we hope to communicate that this approach to problem solving can help students handle the more complex problems they will encounter later on. Some characteristics of the examples include:

encouraging the student to study the problem or the circuit and to make initial observations before diving into a solution pathway;

emphasizing the individual stages of the solution as part of solving the problem systematically, without suggesting that there are rote procedures for problem solving;

exploring decision making, that is, the idea that we are often faced with choosing among many different solution approaches; and

suggesting that students challenge their results by emphasizing the importance of checking and testing answers based on their knowledge of circuit theory and the real world.

Drill Exercises

Drill exercises are included in the text to give students an opportunity to test their understanding of the material they have just read. The drill exercises are presented in a double-column format as a way of signaling to students that they should stop and solve the exercises before proceeding to the next section. Nearly half of the drill exercises are new or revised.

Homework Problems

Users of Electric Circuits have consistently rated the homework problems as one of the book's most attractive features. In the sixth edition, there are nearly 1000 problems. The problems are designed around the following objectives (in parentheses are the corresponding problem categories identified in the Instructor's Manual and an illustrative problem number):

To give students practice in using the analytical techniques developed in the text (Practice; see Problem 4.7)

To show students that analytical techniques are tools, not objectives (Analytical Tool; see Problem 4.2)

To give students practice in choosing the analytical method to be used in obtaining a solution (Open Method; see Problem 4.49)

To show students how the results from one solution can be used to find other information about a circuit's operation (Additional Information; see Problem 4.76)

To encourage students to challenge the solution either by using an alternate method or by testing the solution to see if it makes sense in terms of known circuit behavior (Solution Check; see Problem 4.52)

To introduce students to design oriented problems (Design; see Problem 10.66)

To give students practice in deriving and manipulating equations where quantities of interest are expressed as functions of circuit variables such as R, L, C, co, and so forth; this type of problem also supports the design process (Derivation; see Problem 9.27)

To challenge students with problems that will stimulate their interest in both electrical and computer engineering (Practical; see Problem 3.68)

PREREQUISITES

In writing the first twelve chapters of the text, we have assumed that the reader has taken a course in elementary differential and integral calculus. We have also assumed that the reader has had an introductory physics course, at either the high school or university level, that introduces the concepts of energy, power, electric charge, electric current, electric potential, and electromagnetic fields. In writing the final six chapters, we have assumed the student has had, or is enrolled in, an introductory course in differential equations.

COURSE OPTIONS

The text has been designed for use in a one-semester, two-semester or a three-quarter sequence.

Single-semester course: After covering Chapters 1-4 and Chapters 6-10 (omitting Sections 7.7 and 8.5) the instructor can choose from Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits), Chapters 13 and 14 (Laplace methods), and Chapter 18 (Two-Port Circuits) to develop the desired emphasis.

Two-semester sequence: Assuming three lectures per week, the first nine chapters can be covered during the first semester, leaving Chapters 10-18 for the second semester.

Academic quarter schedule: The book can be subdivided into three parts: Chapters 1-6, Chapters 7-12, and Chapters 13-18.

The introduction to operational amplifier circuits can be omitted without interference by the reader going to the subsequent chapters. For example, if Chapter 5 is omitted, the instructor can simply skip Section 7.7, Section 8.5, Chapter 15, and those problems and drill exercises in the chapters following Chapter 5 that pertain to operational amplifiers.

There are several appendixes at the end of the book to help readers make effective use of their mathematical background. Appendix A reviews Cramer's method of solving simultaneous linear equations and simple matrix algebra; complex numbers are reviewed in Appendix B; Appendix C contains additional material on mutually-coupled coils and ideal transformers; Appendix D contains a brief discussion of the decibel; Appendix E is devoted to an abbreviated table of trigonometric identities that are useful in circuit analysis; and an abbreviated table of useful integrals is given in Appendix F.

On page xvii there is a comprehensive list of the examples with titles and corresponding page numbers.

SUPPLEMENTS

We have put effort into the development of supplements that capitalize and extend the many strengths of the sixth edition. Students and professors are constantly challenged in terms of time and energy by the confines of the classroom and the importance of integrating new information and technologies into an electric circuits course. Through the following supplements, we believe we have succeeded in making some of these challenges more manageable.

PSpice for Electric Circuits

This supplement is published as a separate booklet, to facilitate its use at a computer. It has been revised extensively from the fifth edition, most importantly to eliminate the "programming language" aspect of the original Spice. Now, circuits are described to PSpice using a circuit schematic, and techniques for developing such schematics are presented in the supplement. This supplement continues to present topics in PSpice in the same order as those topics are presented in the text, so the content has undergone minor revision to reflect the revisions in the text.

Instructor's Manual

The Instructor's Manual enables professors to orient themselves quickly to this text and the supplement package. For easy reference, the following information is organized for each chapter:

a chapter overview

problem categorizations

problem references by chapter section

a list of examples

Solutions Manual

The solutions manual contains solutions with supporting figures to all of the 900-plus end-of-chapter problems in the sixth edition. Volume I covers Chapters 1-9, and Volume II covers Chapters 11-18. These supplements, available free to all adopting faculty, were checked for accuracy by several instructors. The manuals are not available for sale to students. A disk containing files for PSpice solution and MATLAB solution for all indicated problems is attached to the solutions manual.

Acknowledgments

We continue to express our appreciation for the contributions of Norman Wittels of Worcester Polytechnic Institute. His contributions to the Practical Perspectives greatly enhanced both this edition and the previous one.

There were many hard-working people behind the scenes at both of our publishers who deserve our thanks and gratitude for their efforts on behalf of the sixth edition. At Addison-Wesley, we would like to thank Paul Becker, Anna Eberhard Friedlander, and Royden Tonamura, and hope that they are proud of the finished product. At Prentice Hall, we thank Tom Robbins and Scott Disanno, who eased the transition to our new publisher with humor, graciousness, understanding, and a ton of really hard work.

The many revisions of the text were guided by careful and thorough reviews from professors. Our heartfelt thanks to Bill Eccles, Rose-Hulman Institute; Major Bob Yahn, US Air Force; Thomas Schubert, University of San Diego; Norman Wittles, WPI; Mahmoud A. Abdallah, Central State University; Nadipuram (Ram) Prasad, New Mexico State University; Terry Martin, University of Arkansas; Belle Shenoi, Wright State University; Nurgun Erdol, Florida Atlantic University; Ezz I. El-Masry, DalTech Dalhouise University; John Naber, University of Louisville; Charles P Neuman, Camegie Mellon University; David Grow, South Dakota School of Mines and Technology; Dan Moore, Rose-Hulman Institute.

Susan would like to thank Professor James Nilsson for the opportunity to share the work and the rewards of Electric Circuits. She doesn't know a more patient, gracious, and hard-working person, and she continues to learn from him in the process of each revision. Thanks also to her team teachers and colleagues, Susan Schneider and Jeff Hock, who help her to stay focused and sane. Thanks to the sophomore classes of 1997-98 and 1998-99 in Electrical Engineering at Marquette University who helped her rewrite many of the Chapter Problems, often unknowingly. Most important, she thanks her sons David and Jason, who continue to tolerate the long hours and the late meals, and give her hugs when she needs to be re-energized.

James would like to thank Susan for accepting the challenge of becoming a coauthor of Electric Circuits. Her willingness to suggest both pedagogical and content changes and at the same time graciously accept constructive criticism when offered has made the transition to the fifth and sixth editions possible. She brings to the text an expertise in computer use and a genuine interest in and enthusiasm for teaching.

James also thanks Robert Yahn (USAF) and Stephen O'Conner (USAF) for their continued interest in the book. He thanks Professor emeriti Thomas Scott and C. J. Triska at Iowa State University who continue to make valuable suggestions concerning the content and pedagogy of the text. Finally, he acknowledges the cooperation of Jacob Chacko, a transmission and distribution engineer at the Ames Municipal Electric System.

Our reader reviews allow you to share your comments on titles you liked,
or didn't, with others. By submitting an online review, you are representing to
Barnes & Noble.com that all information contained in your review is original
and accurate in all respects, and that the submission of such content by you
and the posting of such content by Barnes & Noble.com does not and will not
violate the rights of any third party. Please follow the rules below to help
ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer.
However, we cannot allow persons under the age of 13 to have accounts at BN.com or
to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the
information on the product page, please send us an email.

Reviews should not contain any of the following:

- HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone

- Time-sensitive information such as tour dates, signings, lectures, etc.

- Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.

- Comments focusing on the author or that may ruin the ending for others

- Phone numbers, addresses, URLs

- Pricing and availability information or alternative ordering information

- Advertisements or commercial solicitation

Reminder:

- By submitting a review, you grant to Barnes & Noble.com and its
sublicensees the royalty-free, perpetual, irrevocable right and license to use the
review in accordance with the Barnes & Noble.com Terms of Use.

- Barnes & Noble.com reserves the right not to post any review -- particularly
those that do not follow the terms and conditions of these Rules. Barnes & Noble.com
also reserves the right to remove any review at any time without notice.

- See Terms of Use for other conditions and disclaimers.

Search for Products You'd Like to Recommend

Create a Pen Name

Welcome, penname

You have successfully created your Pen Name. Start enjoying the benefits of the BN.com Community today.

Anonymous

Posted August 11, 2011

No text was provided for this review.

If you find inappropriate content, please report it to Barnes & Noble

## More About This Textbook

## Overview

Designed for use in a one or two-semester Introductory Circuit Analysis or Circuit Theory Course taught in Electrical or Computer Engineering Departments.

Electric Circuits 9/eis the most widely used introductory circuits textbook of the past 25 years. As this book has evolved over the years to meet the changing learning styles of students, importantly, the underlying teaching approaches and philosophies remain unchanged. The goals are:- To build an understanding of concepts and ideas explicitly in terms of previous learning

- To emphasize the relationship between conceptual understanding and problem solving approaches

- To provide students with a strong foundation of engineering practices.

## Editorial Reviews

## Booknews

A textbook for electrical engineering students that assumes a background in electrical physics and elementary differential and integral calculus. Material covered includes operational amplifiers, balanced three-phase circuits, sinusoidal steady-state analysis, the Laplace transform, frequency selective circuits, and the Fourier transform. Annotation c. Book News, Inc., Portland, OR (booknews.com)## Product Details

## Related Subjects

## Meet the Author

Professor

taught at Iowa State University for 39 years. Since retiring from Iowa State, he has been a visiting professor at Notre Dame, California Polytechnic at San Luis Obispo, and the United States Air Force Academy. In 1962, he co-authored (with R.G. Brown)JAMES W NILSSONIntroduction to Linear Systems Analysis(John Wiley & Sons). In 1968, he authoredIntroduction to Circuits, Instruments, and Electronics(Harcourt Brae and World). Professor Nilsson received a Standard Oil Outstanding Teacher Award in 1968, the IEEE Undergraduate Teaching Award in 1992, and the McGraw-Hill Jacob Millman Award in 1995. In 1990, he was elected to the rank of Fellow in the Institute of Electrical and Electronics Engineers.Professor

has been a member of the Department of Electrical and Computer Engineering at Marquette University since 1981. She also holds a clinical research appointment in the Department of Orthopaedics at the Medical College of Wisconsin and was a visiting professor in the Bioengineering Unit at the University of Strathclyde, Glasgow, Scotland, as a Fulbright Scholar during the 1989-90 academic year. She has received two awards for teaching excellence at Marquette, and was recognized for her research contributions with an award from the Chicago Unit of the Shriner's Hospitals.SUSAN A. RIEDEL## Table of Contents

List of Examples xiii

Preface xvii

Chapter 1 Circuit Variables 2Practical Perspective: Balancing Power 3Practical Perspective: Balancing Power 17Summary 18Problems 19Chapter 2 Circuit Elements 24Practical Perspective: Electrical Safety 25Practical Perspective: Electrical Safety 46Summary 47Problems 48Chapter 3 Simple Resistive Circuits 56Practical Perspective: A Rear Window Defroster 57Practical Perspective: A Rear Window Defroster 73Summary 76Problems 77Chapter 4 Techniques of Circuit Analysis 88Practical Perspective: Circuits with Realistic Resistors 89Practical Perspective: Circuits with Realistic Resistors 125Summary 129Problems 130Chapter 5 The Operational Amplifier 144Practical Perspective: Strain Gages 145Practical Perspective: Strain Gages 162Summary 164Problems 165Chapter 6 Inductance, Capacitance, and Mutual Inductance 174Practical Perspective: Proximity Switches 175Practical Perspective: Proximity Switches 200Summary 203Problems 204Chapter 7 Response of First-OrderRLandRCCircuits 212Practical Perspective: A Flashing Light Circuit 213Practical Perspective: A Flashing Light Circuit 245Summary 246Problems 247Chapter 8 Natural and Step Responses ofRLCCircuits 264Practical Perspective: An Ignition Circuit 265Practical Perspective: An Ignition Circuit 294Summary 297Problems 298Chapter 9 Sinusoidal Steady-State Analysis 306Practical Perspective: A Household Distribution Circuit 307Practical Perspective: A Household Distribution Circuit 346Summary 347Problems 348Chapter 10 Sinusoidal Steady-State Power Calculations 360Practical Perspective: Heating Appliances 361Practical Perspective: Heating Appliances 384Summary 386Problems 387Chapter 11 Balanced Three-Phase Circuits 398Practical Perspective: Transmission and Distribution of Electric Power 399Practical Perspective: Transmission and Distribution of Electric Power 418Summary 419Problems 420Chapter 12 Introduction to the Laplace Transform 428Practical Perspective: Transient Effects 429Practical Perspective: Transient Effects 458Summary 459Problems 460Chapter 13 The Laplace Transform in Circuit Analysis 466Practical Perspective: Surge Suppressors 467Practical Perspective: Surge Suppressors 505Summary 506Problems 507Chapter 14 Introduction to Frequency Selective Circuits 522Practical Perspective: Pushbutton Telephone Circuits 523Practical Perspective: Pushbutton Telephone Circuits 550Summary 550Problems 551Chapter 15 Active Filter Circuits 558Practical Perspective: Bass Volume Control 559Practical Perspective: Bass Volume Control 591Summary 594Problems 595Chapter 16 Fourier Series 604Practical Perspective: Active High-Q Filters 605Practical Perspective: Active High-Q Filters 632Summary 634Problems 635Chapter 17 The Fourier Transform 644Practical Perspective: Filtering Digital Signals 645Practical Perspective: Filtering Digital Signals 671Summary 672Problems 672Chapter 18 Two-Port Circuits 678Practical Perspective: Characterizing an Unknown Circuit 679Practical Perspective: Characterizing an Unknown Circuit 697Summary 698Problems 698Appendix A The Solution of Linear Simultaneous Equations 705

Appendix B Complex Numbers 725

Appendix C More on Magnetically Coupled Coils and Ideal Transformers 731

Appendix D The Decibel 739

Appendix E Bode Diagrams 741

Appendix F An Abbreviated Table of Trigonometric Identities 759

Appendix G An Abbreviated Table of Integrals 761

Appendix H Common Standard Component Values 763

Answers to Selected Problems 765

Index 781

## Introduction

## Preface

The sixth edition of

Electric Circuitsis an incremental revision to the most widely used introductory circuits text of the past fifteen years. Importantly, the underlying teaching approaches and philosophies remain unchanged. The goals are:To build an understanding of concepts and ideas explicitly in terms of previous learning.The learning challenges faced by students of engineering circuit analysis are prodigious; each new concept is built on a foundation of many other concepts. In Electric Circuits, much attention is paid to helping students recognize how new concepts and ideas fit together with those previously learned.To emphasize the relationship between conceptual understanding and problem-solving approaches.Developing the students' problem-solving skills continues to be the central challenge in this course. To address this challenge,Electric Circuitsuses examples and simple drill exercises to demonstrate problem-solving approaches and to offer students practice opportunities. We do so not with the primary aim of giving students procedural models for solving problems; rather, we emphasize problem solving as a thought process in which one applies conceptual understanding to the solution of a practical problem. As such, in both the textual development and in the worked-out examples, we place great emphasis on a problem-solving process based on concepts rather than the use of rote procedures. Students are encouraged to think through problems before attacking them, and we often pause to consider the broader implications of a specific problem-solving situation.To provide students witha strong foundation of engineering practices.There are limited opportunities in a sophomore-year circuit analysis course to introduce students to real-world engineering experiences. We continue to emphasize the opportunities that do exist by making a strong effort to develop problems and exercises that use realistic values and represent realizable physical situations. We have included many application-type problems and exercises to help stimulate students' interest, in engineering. Many of these problems require the kind of insight an engineer is expected to display when solving problems.## WHAT'S NEW IN THE SIXTH EDITION

We have come to regard each revision of

Electric Circuitsas an opportunity to make improvements in the book, many of which are based on suggestions from our colleagues and our students. The sixth edition ofElectric Circuitscontinues to support the major learning styles of students in the 1990s as well as to support the major teaching challenges these students present. We increased our focus on motivating the students with examples of practical circuits they have encountered and may have been curious about, and provide more explicit direction in the text for using computer tools such as PSpice and MATLAB to support the study of circuit analysis. The major areas of change are as follows:Content and Organizational ChangesThe most significant change to the sixth edition is the elimination of a separate chapter on mutually coupled coils, with the material being integrated into other chapters. This allows us to present the time-domain equations for mutually-coupled coils as a simple extension of the time domain equations for single inductors in an attempt to "de-mystify" mutually-coupled coils. The applications of mutual coupling, namely linear and ideal transformers, come later, once phasor techniques have been presented. The modifications are summarized as follows:

Practical PerspectivesThe fifth edition of

Electric Circuitsintroduced six Practical Perspectives that offered examples of real-world circuits, taken from realworld devices such as telephones, hair dryers, and automobiles. The sixth edition doubles the number of Practical Perspectives, adding them to Chapters 4, 5, 7, 8, 9, and 15. Now, a total of twelve chapters begin with a brief description of a practical application of the material to follow. Once the chapter material is presented, the chapter concludes with a quantitative analysis of the application. Several problems pertaining to the Practical Perspective are included in the chapter problems and are identified with a diamond icon. The Practical Perspectives are designed to stimulate students' interest in applying circuit analysis to the design of useful circuits and devices, and to consider some of the complexities associated with making a working circuit.Integration of Computer ToolsComputer tools cannot replace the traditional methods for mastering the study of electric circuits. They can, however, assist students in the learning process by providing a visual representation of a circuit's behavior, validating a calculated solution, reducing the computational burden of more complex circuits, and iterating toward a desired solution using parameter variation. This computational support is often invaluable in the design process.

The sixth edition merges the support for two popular computer tools, PSpice and MATLAB, into the main text with the addition of icons identifying chapter problems suited for exploration with one or both of these tools. The icon (P) identifies those problems to investigate with PSpice, while the icon (M) identifies problems to investigate with MATLAB. Instructors are provided with computer files containing the PSpice or MATLAB simulation of the problems so marked.

## DESIGN EMPHASIS

We continue to support the emphasis on design of circuits in several ways. First, several of the new practical perspective discussions focus on the design aspects of the circuits. The accompanying chapter problems continue the discussion of the design issues in these practical examples. Second, design oriented chapter problems have been explicitly labeled with a four-diamond icon, enabling students and instructors to identify those problems with a design focus. Third, the identification of problems suited to exploration with PSpice or MATLAB suggests design opportunities using one or both of these computer tools.

Text Design and Pedagogical FeaturesThe sixth edition continues the successful design introduced in the fifth edition, including the following features:

Practical Perspective introductionsare located opposite twelve chapter opening pages and are highlighted with a second-color background.Practical Perspective examplesat the end of these twelve chapters are set apart in an easy-to-identify separate section.Practical Perspective problemsin the Chapter Problem sets are indicated with a diamond icon for easy reference.Key termsare set in boldface when they are first defined. They also appear in boldface in the chapter summaries. This makes it easier for students to find the definitions of important terms.Design problemsin the Chapter Problem sets are indicated with a four-diamond icon for easy reference.PSpice problemsin the Chapter Problem sets are indicated with a (P) icon for easy reference.MATLABproblems in the Chapter Problem sets are indicated with a (M) icon for easy reference.## EXAMPLES, DRILL EXERCISES, AND HOMEWORK PROBLEMS

Solved Numerical ExamplesSolved numerical examples are used extensively throughout the text to help students understand how theory is applied to circuit analysis. Because many students value worked examples more than any other aspect of the text, these examples represent an important opportunity to influence the development of student's problem-solving behavior. The nature and format of the examples in

Electric Circuitsare a reflection of the overall teaching approach of the text. When presenting a solution, we place great emphasis on the importance of problem solving as a thought process that applies underlying concepts, as we discussed earlier. By emphasizing this idea even in the solution of simple problems we hope to communicate that this approach to problem solving can help students handle the more complex problems they will encounter later on. Some characteristics of the examples include:Drill ExercisesDrill exercises are included in the text to give students an opportunity to test their understanding of the material they have just read. The drill exercises are presented in a double-column format as a way of signaling to students that they should stop and solve the exercises before proceeding to the next section. Nearly half of the drill exercises are new or revised.

Homework ProblemsUsers of

Electric Circuitshave consistently rated the homework problems as one of the book's most attractive features. In the sixth edition, there are nearly 1000 problems. The problems are designed around the following objectives (in parentheses are the corresponding problem categories identified in theInstructor's Manualand an illustrative problem number):## PREREQUISITES

In writing the first twelve chapters of the text, we have assumed that the reader has taken a course in elementary differential and integral calculus. We have also assumed that the reader has had an introductory physics course, at either the high school or university level, that introduces the concepts of energy, power, electric charge, electric current, electric potential, and electromagnetic fields. In writing the final six chapters, we have assumed the student has had, or is enrolled in, an introductory course in differential equations.

## COURSE OPTIONS

The text has been designed for use in a one-semester, two-semester or a three-quarter sequence.

Single-semester course:After covering Chapters 1-4 and Chapters 6-10 (omitting Sections 7.7 and 8.5) the instructor can choose from Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits), Chapters 13 and 14 (Laplace methods), and Chapter 18 (Two-Port Circuits) to develop the desired emphasis.Two-semester sequence:Assuming three lectures per week, the first nine chapters can be covered during the first semester, leaving Chapters 10-18 for the second semester.Academic quarter schedule:The book can be subdivided into three parts: Chapters 1-6, Chapters 7-12, and Chapters 13-18.The introduction to operational amplifier circuits can be omitted without interference by the reader going to the subsequent chapters. For example, if Chapter 5 is omitted, the instructor can simply skip Section 7.7, Section 8.5, Chapter 15, and those problems and drill exercises in the chapters following Chapter 5 that pertain to operational amplifiers.

There are several appendixes at the end of the book to help readers make effective use of their mathematical background. Appendix A reviews Cramer's method of solving simultaneous linear equations and simple matrix algebra; complex numbers are reviewed in Appendix B; Appendix C contains additional material on mutually-coupled coils and ideal transformers; Appendix D contains a brief discussion of the decibel; Appendix E is devoted to an abbreviated table of trigonometric identities that are useful in circuit analysis; and an abbreviated table of useful integrals is given in Appendix F.

On page xvii there is a comprehensive list of the examples with titles and corresponding page numbers.

## SUPPLEMENTS

We have put effort into the development of supplements that capitalize and extend the many strengths of the sixth edition. Students and professors are constantly challenged in terms of time and energy by the confines of the classroom and the importance of integrating new information and technologies into an electric circuits course. Through the following supplements, we believe we have succeeded in making some of these challenges more manageable.

PSpice forElectric CircuitsThis supplement is published as a separate booklet, to facilitate its use at a computer. It has been revised extensively from the fifth edition, most importantly to eliminate the "programming language" aspect of the original Spice. Now, circuits are described to PSpice using a circuit schematic, and techniques for developing such schematics are presented in the supplement. This supplement continues to present topics in PSpice in the same order as those topics are presented in the text, so the content has undergone minor revision to reflect the revisions in the text.

Instructor's ManualThe Instructor's Manual enables professors to orient themselves quickly to this text and the supplement package. For easy reference, the following information is organized for each chapter:

Solutions ManualThe solutions manual contains solutions with supporting figures to all of the 900-plus end-of-chapter problems in the sixth edition. Volume I covers Chapters 1-9, and Volume II covers Chapters 11-18. These supplements, available free to all adopting faculty, were checked for accuracy by several instructors. The manuals are not available for sale to students. A disk containing files for PSpice solution and MATLAB solution for all indicated problems is attached to the solutions manual.

AcknowledgmentsWe continue to express our appreciation for the contributions of Norman Wittels of Worcester Polytechnic Institute. His contributions to the Practical Perspectives greatly enhanced both this edition and the previous one.

There were many hard-working people behind the scenes at both of our publishers who deserve our thanks and gratitude for their efforts on behalf of the sixth edition. At Addison-Wesley, we would like to thank Paul Becker, Anna Eberhard Friedlander, and Royden Tonamura, and hope that they are proud of the finished product. At Prentice Hall, we thank Tom Robbins and Scott Disanno, who eased the transition to our new publisher with humor, graciousness, understanding, and a ton of really hard work.

The many revisions of the text were guided by careful and thorough reviews from professors. Our heartfelt thanks to Bill Eccles, Rose-Hulman Institute; Major Bob Yahn, US Air Force; Thomas Schubert, University of San Diego; Norman Wittles, WPI; Mahmoud A. Abdallah, Central State University; Nadipuram (Ram) Prasad, New Mexico State University; Terry Martin, University of Arkansas; Belle Shenoi, Wright State University; Nurgun Erdol, Florida Atlantic University; Ezz I. El-Masry, DalTech Dalhouise University; John Naber, University of Louisville; Charles P Neuman, Camegie Mellon University; David Grow, South Dakota School of Mines and Technology; Dan Moore, Rose-Hulman Institute.

Susan would like to thank Professor James Nilsson for the opportunity to share the work and the rewards of

Electric Circuits.She doesn't know a more patient, gracious, and hard-working person, and she continues to learn from him in the process of each revision. Thanks also to her team teachers and colleagues, Susan Schneider and Jeff Hock, who help her to stay focused and sane. Thanks to the sophomore classes of 1997-98 and 1998-99 in Electrical Engineering at Marquette University who helped her rewrite many of the Chapter Problems, often unknowingly. Most important, she thanks her sons David and Jason, who continue to tolerate the long hours and the late meals, and give her hugs when she needs to be re-energized.James would like to thank Susan for accepting the challenge of becoming a coauthor of

Electric Circuits.Her willingness to suggest both pedagogical and content changes and at the same time graciously accept constructive criticism when offered has made the transition to the fifth and sixth editions possible. She brings to the text an expertise in computer use and a genuine interest in and enthusiasm for teaching.James also thanks Robert Yahn (USAF) and Stephen O'Conner (USAF) for their continued interest in the book. He thanks Professor emeriti Thomas Scott and C. J. Triska at Iowa State University who continue to make valuable suggestions concerning the content and pedagogy of the text. Finally, he acknowledges the cooperation of Jacob Chacko, a transmission and distribution engineer at the Ames Municipal Electric System.