Electric Power Systems: A First Course / Edition 1

Hardcover (Print)
Rent
Rent from BN.com
$25.68
(Save 83%)
Est. Return Date: 11/16/2014
Used and New from Other Sellers
Used and New from Other Sellers
from $47.79
Usually ships in 1-2 business days
(Save 69%)
Other sellers (Hardcover)
  • All (10) from $47.79   
  • New (5) from $64.96   
  • Used (5) from $47.79   

Overview

Author Ned Mohan has been a leader in EES education and research for decades. His three-book series on Power Electronics focuses on three essential topics in the power sequence based on applications relevant to this age of sustainable energy such as wind turbines and hybrid electric vehicles. The three topics include power electronics, power systems and electric machines.

Key features in the first Edition build on Mohan's successful MNPERE texts; his systems approach which puts dry technical detail in the context of applications; and substantial pedagogical support including PPT's, video clips, animations, clicker questions and a lab manual. It follows a top-down systems-level approach to power electronics to highlight interrelationships between these sub-fields. It's intended to cover fundamental and practical design. This book also follows a building-block approach to power electronics that allows an in-depth discussion of several important topics that are usually left. Topics are carefully sequenced to maintain continuity and interest.

Read More Show Less

Product Details

  • ISBN-13: 9781118074794
  • Publisher: Wiley
  • Publication date: 1/18/2012
  • Series: CourseSmart Series
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 256
  • Sales rank: 503,373
  • Product dimensions: 7.20 (w) x 10.00 (h) x 0.50 (d)

Table of Contents

PREFACE xi

CHAPTER 1 POWER SYSTEMS: A CHANGING LANDSCAPE 1

1.1 Nature of Power Systems 1

1.2 Changing Landscape of Power Systems and Utility Deregulation 2

1.3 Topics in Power Systems 3

References 4

Problems 5

CHAPTER 2 REVIEW OF BASIC ELECTRIC CIRCUITS AND ELECTROMAGNETIC CONCEPTS 6

2.1 Introduction [1] 6

2.2 Phasor Representation in Sinusoidal Steady State 6

2.3 Power, Reactive Power, and Power Factor 9

2.4 Three-Phase Circuits 15

2.5 Real and Reactive Power Transfer Between AC Systems 21

2.6 Apparatus Ratings, Base Values, and Per-Unit Quantities 22

2.7 Energy Efficiencies of Power System Apparatus 24

2.8 Electromagnetic Concepts 24

Reference 33

Problems 33

Appendix 2A 35

CHAPTER 3 ELECTRIC ENERGY AND THE ENVIRONMENT 39

3.1 Introduction 39

3.2 Choices and Consequences 39

3.3 Hydro Power 40

3.4 Fossil FuelBased Power Plants 41

3.5 Nuclear Power 43

3.6 Renewable Energy 45

3.7 Distributed Generation (DG) 52

3.8 Environmental Consequences and Remedial Actions 52

3.9 Resource Planning 53

References 55

Problems 55

CHAPTER 4 AC TRANSMISSION LINES AND UNDERGROUND CABLES 57

4.1 Need for Transmission Lines and Cables 57

4.2 Overhead AC Transmission Lines 57

4.3 Transposition of Transmission Line Phases 59

4.4 Transmission Lines Parameters 59

4.5 Distributed-Parameter Representation of Transmission Lines in Sinusoidal Steady State 66

4.6 Surge Impedance Zc and the Surge Impedance Loading (SII) 68

4.7 Lumped Transmission Line Models in Steady State 70

4.8 Cables [8] 72

References 73

Problems 74

Appendix 4A Long Transmission Lines 75

CHAPTER 5 POWER FLOW IN POWER SYSTEM NETWORKS 78

5.1 Introduction 78

5.2 Description of the Power System 79

5.3 Example Power System 79

5.4 Building the Admittance Matrix 80

5.5 Basic Power Flow Equations 82

5.6 Newton-Raphson Procedure 83

5.7 Solution of Power Flow Equations Using N-R Method 85

5.8 Fast Decoupled N-R Method for Power Flow 89

5.9 Sensitivity Analysis 90

5.10 Reaching the Bus Var Limit 90

5.11 Synchronized Phasor Measurements, Phasor Measurement Units (PMUs), and Wide-Area Measurement Systems 91

References 91

Problems 91

Appendix 5A Gauss-Seidel Procedure for Power Flow Calculations 92

CHAPTER 6 TRANSFORMERS IN POWER SYSTEMS 94

6.1 Introduction 94

6.2 Basic Principles of Transformer Operation 94

6.3 Simplified Transformer Model 99

6.4 Per-Unit Representation 101

6.5 Transformer Efficiencies and Leakage Reactances 103

6.6 Regulation in Transformers 104

6.7 Auto-Transformers 104

6.8 Phase-Shift Introduced by Transformers 106

6.9 Three-Winding Transformers 107

6.10 Three-Phase Transformers 108

6.11 Representing Transformers with Off-Nominal Turns Ratios, Taps, and Phase-Shift 108

References 110

Problems 110

CHAPTER 7 HIGH VOLTAGE DC (HVDC) TRANSMISSION SYSTEMS 113

7.1 Introduction 113

7.2 Power Semiconductor Devices and Their Capabilities 113

7.3 HVDC Transmission Systems 114

7.4 Current-Link HVDC Systems 115

7.5 Voltage-Link HVDC Systems 125

References 129

Problems 130

CHAPTER 8 DISTRIBUTION SYSTEM, LOADS, AND POWER QUALITY 132

8.1 Introduction 132

8.2 Distribution Systems 132

8.3 Power System Loads 133

8.4 Power Quality Considerations 137

8.5 Load Management [6,7] and Smart Grid 148

8.6 Price of Electricity [3] 149

References 149

Problems 149

CHAPTER 9 SYNCHRONOUS GENERATORS 151

9.1 Introduction 151

9.2 Structure 152

9.3 Induced EMF in the Stator Windings 154

9.4 Power Output, Stability, and the Loss of Synchronism 159

9.5 Field Excitation Control to Adjust Reactive Power 160

9.6 Field Exciters for Automatic Voltage Regulation (AVR) 162

9.7 Synchronous, Transient, and Subtransient Reactances 162

References 164

Problems 165

CHAPTER 10 VOLTAGE REGULATION AND STABILITY IN POWER SYSTEMS 166

10.1 Introduction 166

10.2 Radial System as an Example 166

10.3 Voltage Collapse 169

10.4 Prevention of Voltage Instability 170

References 176

Problems 176

CHAPTER 11 TRANSIENT AND DYNAMIC STABILITY OF POWER SYSTEMS 178

11.1 Introduction 178

11.2 Principle of Transient Stability 178

11.3 Transient Stability Evaluation in Large Systems 186

11.4 Dynamic Stability 187

References 188

Problems 188

Appendix 11A Inertia, Torque and Acceleration in Rotating Systems 188

CHAPTER 12 CONTROL OF INTERCONNECTED POWER SYSTEM AND ECONOMIC DISPATCH 192

12.1 Control Objectives 192

12.2 Voltage Control by Controlling Excitation and the Reactive Power 193

12.3 Automatic Generation Control (AGC) 194

12.4 Economic Dispatch and Optimum Power Flow 201

References 206

Problems 206

CHAPTER 13 TRANSMISSION LINE FAULTS, RELAYING, AND CIRCUIT BREAKERS 208

13.1 Causes of Transmission Line Faults 208

13.2 Symmetrical Components for Fault Analysis 209

13.3 Types of Faults 211

13.4 System Impedances for Fault Calculations 215

13.5 Calculation of Fault Currents in Large Networks 218

13.6 Protection against Short-Circuit Faults 219

References 227

Problems 227

CHAPTER 14 TRANSIENT OVERVOLTAGES, SURGE PROTECTION, AND INSULATION COORDINATION 229

14.1 Introduction 229

14.2 Causes of Overvoltages 229

14.3 Transmission Line Characteristics and Representation 230

14.4 Insulation to Withstand Overvoltages 233

14.5 Surge Arresters and Insulation Coordination 234

References 235

Problems 235

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)