Electron Transport in Compound Semiconductors

Paperback (Softcover reprint of the original 1st ed. 1980)
$129.00
BN.com price
Other sellers (Paperback)
  • All (10) from $95.61   
  • New (8) from $95.61   
  • Used (2) from $128.99   
Sending request ...

More About This Book

Product Details

  • ISBN-13: 9783642814181
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 12/15/2011
  • Series: Springer Series in Solid-State Sciences, #11
  • Edition description: Softcover reprint of the original 1st ed. 1980
  • Edition number: 1
  • Pages: 464
  • Product dimensions: 6.14 (w) x 9.21 (h) x 0.97 (d)

Table of Contents

1. Introduction.- 1.1 Historical Note.- 1.2 Applications.- 1.3 Transport Coefficients of Interest.- 1.4 Scope of the Book.- 2. Crystal Structure.- 2.1 Zinc-Blende Structure.- 2.2 Wurtzite Structure.- 2.3 Rock-Salt Structure.- 2.4 Chalcopyrite Structure.- 3. Energy Band Structure.- 3.1 Electron Wave Vector and Brillouin Zone.- 3.2 Brillouin Zone for the Sphalerite and Rock-Salt Crystal Structure.- 3.3 Brillouin Zone for the Wurtzite Structure.- 3.4 Brillouin Zone for the Chalcopyrite Structure.- 3.5 E-k Diagrams.- 3.5.1 Energy Bands for the Sphalerite Structure.- 3.5.2 Energy Bands for the Wurtzite Structure.- 3.5.3 Energy Bands for the Rock-Salt Structure.- 3.5.4 Band Structure of Mixed Compounds.- 3.6 Conclusion.- 4. Theory of Efiergy Band Structure.- 4.1 Models of Band Structure.- 4.2 Free-Electron Approximation Model.- 4.3 Tight-Binding Approximation Model.- 4.4 Energy Bands in Semiconductor Super!attices.- 4.5 The k-p Perturbation Method for Derivating E-k Relation.- 4.5.1 Single-Band Perturbation Theory.- 4.5.2 Two-Band Approximation.- 4.5.3 Effect of Spin-Orbit Interaction.- 4.5.4 Nonparabolic Relation for Extrema at Points Other than the r Point.- 4.6 External Effects on Energy Bands.- 4.6.1 Effects of Doping.- 4.6.2 Effects of Large Magnetic Fields.- 5. Electron Statistics.- 5.1 Fermi Energy for Parabolic Bands.- 5.2 Fermi Energy for Nonparabolic Bands.- 5.3 Fermi Energy in the Presence of a Quantising Magnetic Field.- 5.3.1 Density of States.- 5.3.2 Fermi Level.- 5.4 Fermi Energy and Impurity Density.- 5.4.1 General Considerations.- 5.4.2 General Formula.- 5.4.3 Discussion of Parabolic Band.- 5.4.4 Effect of Magnetic Field.- 5.5 Conclusions.- 6. Scattering Theory.- 6.1 Collision Processes.- 6.2 Transition Probability.- 6.3 Matrix Elements.- 6.4 Free-Carrier Screening.- 6.5 Overlap Integrals.- 6.6 Scattering Probability S(k).- 6.6.1 S(k) for Ionised Impurity Scattering.- 6.6.2 S(k) for Piezoelectric Scattering.- 6.6.3 S(k) for Deformation-Potential Acoustic Phonon Scattering.- 6.6.4 S(k) for Polar Optic Phonon Scattering.- 6.6.5 S(k) for Intervalley and Nonpolar Optic Phonon Scattering.- 6.7 Scattering Probabilities for Anisotropic Bands.- 6.7.1 Herring-Vogt Transformation.- 6.7.2 Scattering Integrals.- 6.8 S(k) for Neutral Impurity, Alloy, and Crystal-Defect Scattering.- 6.8.1 Neutral-Impurity Scattering.- 6.8.2 Alloy Scattering.- 6.8.3 Defect Scattering.- 6.9 Conclusions.- 7. The Boltzmann Transport Equation and Its Solution.- 7.1 The Liouville Equation and the Boltzmann Equation.- 7.2 The Boltzmann Transport Equation.- 7.3 The Collision Integral.- 7.4 Linearised Boltzmann Equation.- 7.5 Simplified Form of the Collision Terms.- 7.5.1 Collision Terms for Elastic Scattering.- 7.5.2 Collision Terms for Inelastic Scattering.- 7.6 Solution of the Boltzmann Equation.- 7.6.1 Relaxation-Time Approximation.- 7.6.2 Variational Method.- 7.6.3 Matrix Method.- 7.6.4 Iteration Method.- 7.6.5 Monte Carlo Method.- 7.7 Method of Solution for Anisotropic Coupling Constants and Anisotropic Electron Effective Mass.- 7.7.1 Solution for Elastic Collisions.- 7.7.2 Solution for Randomising Collisions.- 7.7.3 Solution for Nonrandomising Inelastic Collisions.- 7.8 Conclusions.- 8. Low-Field DC Transport Coefficients.- 8.1 Evaluation of Drift Mobility.- 8.1.1 Formulae for Relaxation-Time Approximation.- 8.1.2 Evaluation by the Variational Method.- 8.1.3 Evaluation by Matrix and Iteration Methods.- 8.1.4 Evaluation by the Monte Carlo Method.- 8.2 Drift Mobility for Anisotropic Bands.- 8.2.1 Ellipsoidal Band.- 8.2.2 Warped Band.- 8.3 Galvanomagnetic Transport Coefficients.- 8.3:1 Formulae for Hall Coefficient, Hall Mobility, and Magnetoresistance.- 8.3.2 Reduced Boltzmann Equation for the Galvanomagnetic Coefficients.- 8.3.3 Solution Using the Relaxation-Time Approximation Method.- 8.3.4 A Simple Formula for the Low-Field Hall Mobility.- 8.3.5 Numerical Methods for the Galvanomagnetic Coefficients for Arbitrary Magnetic Fields.- 8.3.6 Evaluation of the Galvanomagnetic Transport Coefficients for Anisotropic Effective Mass.- 8.4 Transport Coefficients for Nonuniform conditions.- 8.4.1 Diffusion.- 8.4.2 Thermal Transport Coefficients.- 8.4.3 Formula for Thermoelectric Power.- 8.4.4 Electronic Thermal Conductivity.- 8.5 Conclusions.- 9. Low-Field AC Transport Coefficients.- 9.1 Classical Theory of AC Transport Coefficients.- 9.1.1 Solution for the Relaxation-Time Approximation.- 9.1.2 Solution for Polar Optic Phonon and Mixed Scattering.- 9.1.3 Solution for Nonparabolic and Anisotropic Bands.- 9.2 AC Galvanomagnetic Coefficients.- 9.3 Cyclotron Resonance and Faraday Rotation.- 9.3.1 Propagation of Electromagnetic Waves in a Semiconductor in the Presence of a Magnetic Field.- 9.3.2 Cyclotron Resonance Effect.- 9.3.3 Faraday Rotation.- 9.4 Free-Carrier Absorption (FCA).- 9.4.1 Classical Theory of FCA.- 9.4.2 Quantum-Mechanical Theory of FCA.- 9.5 Concluding Remarks.- 10. Electron Transport in a Strong Magnetic Field.- 10.1 Scattering Probabilities.- 10.2 Mobility in Strong Magnetic Fields.- 10.3 Electron Mobility in the Extreme Quantum Limit (EQL).- 10.3.1 Electron Mobility for Polar Optic Phonon Scattering in the EQL.- 10.4 Oscillatory Effects in the Magnetoresistance.- 10.4.1 Shubnikov-de Haas Effect.- 10.4.2 Magnetophonon Oscillations.- 10.5 Experimental Results on Magnetophonon Resonance.- 10.6 Conclusions.- 11. Hot-Electron Transport.- 11.1 Phenomenon of Hot Electrons.- 11.2 Experimental Characteristics.- 11.3 Negative Differential Mobility and Electron Transfer Effect.- 11.4 Analytic Theories.- 11.4.1 Differential Equation Method.- 11.4.2 Maxwellian Distribution Function Method.- 11.4.3 Displaced Maxwellian Distribution Function Method.- 11.5 Numerical Methods.- 11.5.1 Iteration Method.- 11.5.2 Monte Carlo Method.- 11.6 Hot-Electron AC Conductivity.- 11.6.1 Phenomenological Theory for Single-Valley Materials.- 11.6.2 Phenomenological Theory for Two-Valley Materials.- 11.6.3 Large-Signal AC Conductivity.- 11.7 Hot-Electron Diffusion.- 11.7.1 Einstein Relation for Hot-Electron Diffusivity.- 11.7.2 Electron Diffusivity in Gallium Arsenide.- 11.7.3 Monte Carlo Calculation of the Diffusion Constant.- 11.8 Conclusion.- 12. Review of Experimental Results.- 12.1 Transport Coefficients of III-V Compounds.- 12.1.1 Indium Antimonide.- 12.1.2 Gallium Arsenide.- 12.1.3 Indium Phosphide.- 12.1.4 Indium Arsenide.- 12.1.5 Indirect-Band-Gap III-V Compounds.- 12.2 II-VI Compounds.- 12.2.1 Cubic Compounds of Zinc and Cadmium.- 12.2.2 Wurtzite Compounds of Zinc and Cadmium.- 12.2.3 Mercury Compounds.- 12.3 IV-VI Compounds.- 12.4 Mixed Compounds.- 12.5 Chalcopyrites.- 12.6 Conclusion.- 13. Conclusions.- 13.1 Problems of Current Interest.- 13.1.1 Heavily Doped Materials.- 13.1.2 Alloy Semiconductors.- 13.1.3 Transport Under Magnetically Quantised Conditions.- 13.1.4 Inversion Layers.- 13.1.5 Superlattices and Heterostructures.- 13.2 Scope of Further Studies.- Appendix A: Table of Fermi Integrals.- Appendix B: Computer Program for the Evaluation of Transport Coefficients by the Iteration Method.- Appendix C: Values of a. and b. for Gaussian Quadrature Integration. 417 Appendix D: Computer Program for the Monte Carlo Calculation of Hot-Electron Conductivity and Diffusivity.- List of Symbols.- References.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)