Elementary Number Theory / Edition 6

Hardcover (Print)
Rent
Rent from BN.com
$28.07
(Save 83%)
Est. Return Date: 09/23/2014
Buy Used
Buy Used from BN.com
$104.14
(Save 38%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $92.20
Usually ships in 1-2 business days
(Save 45%)
Other sellers (Hardcover)
  • All (13) from $92.20   
  • New (6) from $136.64   
  • Used (7) from $92.20   

Overview

Elementary Number Theory, Sixth Edition, blends classical theory with modern applications and is notable for its outstanding exercise sets. A full range of exercises, from basic to challenging, helps readers explore key concepts and push their understanding to new heights. Computational exercises and computer projects are also available. Reflecting many years of professors' feedback, this edition offers new examples, exercises, and applications, while incorporating advancements and discoveries in number theory made in the past few years.
Read More Show Less

Product Details

  • ISBN-13: 9780321500311
  • Publisher: Pearson
  • Publication date: 4/13/2010
  • Edition description: New Edition
  • Edition number: 6
  • Pages: 768
  • Sales rank: 450,369
  • Product dimensions: 7.30 (w) x 9.00 (h) x 1.20 (d)

Meet the Author

Kenneth H. Rosen received his BS in mathematics from the University of Michigan—Ann Arbor (1972) and his PhD in mathematics from MIT (1976). Before joining Bell Laboratories in 1982, he held positions at the University of Colorado—Boulder, The Ohio State University—Columbus, and the University of Maine—Orono, where he was an associate professor of mathematics. While working at AT&T Laboratories, he taught at Monmouth University, teaching courses in discrete mathematics, coding theory, and data security.

Dr. Rosen has published numerous articles in professional journals in the areas of number theory and mathematical modeling. He is the author of Elementary Number Theory, 6/e, and other books.

Read More Show Less

Table of Contents

P. What is Number Theory?

1. The Integers.

Numbers and Sequences.

Sums and Products.

Mathematical Induction.

The Fibonacci Numbers.

2. Integer Representations and Operations.

Representations of Integers.

Computer Operations with Integers.

Complexity of Integer Operations.

3. Primes and Greatest Common Divisors.

Prime Numbers.

The Distribution of Primes.

Greatest Common Divisors.

The Euclidean Algorithm.

The Fundemental Theorem of Arithmetic.

Factorization Methods and Fermat Numbers.

Linear Diophantine Equations.

4. Congruences.

Introduction to Congruences.

Linear Congrences.

The Chinese Remainder Theorem.

Solving Polynomial Congruences.

Systems of Linear Congruences.

Factoring Using the Pollard Rho Method.

5. Applications of Congruences.

Divisibility Tests.

The perpetual Calendar.

Round Robin Tournaments.

Hashing Functions.

Check Digits.

6. Some Special Congruences.

Wilson's Theorem and Fermat's Little Theorem.

Pseudoprimes.

Euler's Theorem.

7. Multiplicative Functions.

The Euler Phi-Function.

The Sum and Number of Divisors.

Perfect Numbers and Mersenne Primes.

Mobius Inversion.
Partitions.

8. Cryptology.

Character Ciphers.

Block and Stream Ciphers.

Exponentiation Ciphers.

Knapsack Ciphers.

Cryptographic Protocols and Applications.

9. Primitive Roots.

The Order of an Integer and Primitive Roots.

Primitive Roots for Primes.

The Existence of Primitive Roots.

Index Arithmetic.

Primality Tests Using Orders of Integers and Primitive Roots.

Universal Exponents.

10. Applications of Primitive Roots and the Order of an Integer.

Pseudorandom Numbers.

The EIGamal Cryptosystem.

An Application to the Splicing of Telephone Cables.

11. Quadratic Residues.

Quadratic Residues and nonresidues.

The Law of Quadratic Reciprocity.

The Jacobi Symbol.

Euler Pseudoprimes.

Zero-Knowledge Proofs.

12. Decimal Fractions and Continued.

Decimal Fractions.

Finite Continued Fractions.

Infinite Continued Fractions.

Periodic Continued Fractions.

Factoring Using Continued Fractions.

13. Some Nonlinear Diophantine Equations.

Pythagorean Triples.

Fermat's Last Theorem.

Sums of Squares.

Pell's Equation.
Congruent Numbers.

14. The Gaussian Integers.

Gaussian Primes.

Unique Factorization of Gaussian Integers.

Gaussian Integers and Sums of Squares.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)