Elements of the Representation Theory of the Jacobi Group / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $35.94
Usually ships in 1-2 business days
(Save 74%)
Other sellers (Hardcover)
  • All (4) from $35.94   
  • New (1) from $58.00   
  • Used (3) from $35.94   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$58.00
Seller since 2006

Feedback rating:

(336)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
1998 Hard cover New Sewn binding. Cloth over boards. 236 p. Progress in Mathematics, 163. Audience: General/trade. BRAND NEW. gift quality. NO DJ (as issued)

Ships from: Chicago, IL

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

The Jacobi group is a semidirect product of a symplectic group with a Heisenberg group. It is an important example for a non-reductive group and sets the frame within which to treat theta functions as well as elliptic functions - in particular, the universal elliptic curve.

This text gathers for the first time material from the representation theory of this group in both local (archimedean and non-archimedean) cases and in the global number field case. Via a bridge to Waldspurger's theory for the metaplectic group, complete classification theorems for irreducible representations are obtained. Further topics include differential operators, Whittaker models, Hecke operators, spherical representations and theta functions. The global theory is aimed at the correspondence between automorphic representations and Jacobi forms. This volume is thus a complement to the seminal book on Jacobi forms by M. Eichler and D. Zagier.

Incorporating results of the authors' original research, this exposition is meant for researchers and graduate students interested in algebraic groups and number theory, in particular, modular and automorphic forms.

Read More Show Less

Editorial Reviews

From the Publisher

"The book under review collects and regroups results on the representation theory of the Jacobi group of lowest degree mostly due to R.Berndt and his coworkers J.Homrighausen and R.Schmidt. The book is very well written and gives an up to date collection of the results known. It will be quite useful for everyone working in the field. The first chapter introduces the Jacobi group ~GJ, a semi-direct product of SL(2) with a Heisenberg group, and describes different possible coordinates on the group, the Haar measure, the Lie algebra, as well as, over the reals, a (generalized) Iwasawa decomposition and the associated homogeneous space..."

---Zentralblatt Math

"This book is an exposition which incorporates results of the authors' research works [that] will be very helpful for those who have some knowledge of the Jacquet-Langlands theory for GL2... Recommended for researchers interested in modular and automorphic forms."

---Mathematical Reviews

Read More Show Less

Product Details

  • ISBN-13: 9783764359225
  • Publisher: Birkhauser Basel
  • Publication date: 7/1/1998
  • Series: Progress in Mathematics Series , #163
  • Edition number: 1
  • Pages: 236
  • Product dimensions: 9.21 (w) x 6.14 (h) x 0.56 (d)

Meet the Author

Rolf Berndt is a Professor of Mathematics at the University of Hamburg.

Ralf Schmidt is a Professor ofMathematics at theUniversity of Oklahoma, Norman, OK, USA.

Read More Show Less

Table of Contents

Introduction
1 The Jacobi Group
2 Basic Representation Theory of the Jacobi Group
3 Local Representations: The Real Case
4 The Space L[superscript 2](T[superscript J]\G[superscript J](R)) and its Decomposition
5 Local Representations: The p-adic Case
6 Spherical Representations
7 Global Considerations
Bibliography
Index of Notations
Index
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)