Elliptic Functions and Modular Forms
The theory of elliptic functions and modular forms is rich and storied, though it has a reputation for difficulty. In this textbook, the authors successfully bridge foundational concepts and advanced material. Following Weierstrass’s approach to elliptic functions, they also cover elliptic curves and complex multiplication. The sections on modular forms, which can be read independently, include discussions of Hecke operators and Dirichlet series. Special emphasis is placed on theta series, with some advanced results included. With detailed proofs and numerous exercises, this book is well-suited for self-study or use as a reference. A companion website provides videos and a discussion forum on the topic.

1147152436
Elliptic Functions and Modular Forms
The theory of elliptic functions and modular forms is rich and storied, though it has a reputation for difficulty. In this textbook, the authors successfully bridge foundational concepts and advanced material. Following Weierstrass’s approach to elliptic functions, they also cover elliptic curves and complex multiplication. The sections on modular forms, which can be read independently, include discussions of Hecke operators and Dirichlet series. Special emphasis is placed on theta series, with some advanced results included. With detailed proofs and numerous exercises, this book is well-suited for self-study or use as a reference. A companion website provides videos and a discussion forum on the topic.

59.99 In Stock
Elliptic Functions and Modular Forms

Elliptic Functions and Modular Forms

Elliptic Functions and Modular Forms

Elliptic Functions and Modular Forms

Paperback

$59.99 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The theory of elliptic functions and modular forms is rich and storied, though it has a reputation for difficulty. In this textbook, the authors successfully bridge foundational concepts and advanced material. Following Weierstrass’s approach to elliptic functions, they also cover elliptic curves and complex multiplication. The sections on modular forms, which can be read independently, include discussions of Hecke operators and Dirichlet series. Special emphasis is placed on theta series, with some advanced results included. With detailed proofs and numerous exercises, this book is well-suited for self-study or use as a reference. A companion website provides videos and a discussion forum on the topic.


Product Details

ISBN-13: 9783662712238
Publisher: Springer Berlin Heidelberg
Publication date: 05/02/2025
Series: Universitext
Pages: 364
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Max Koecher (born 1924) studied mathematics and physics at the University of Göttingen. He initially worked on modular forms of several variables, leaving his mark with a well-known principle bearing his name. Later on, he concentrated on Jordan algebras and in particular their connections with bounded symmetric domains. In 1970, he was appointed to Hans Petersson's chair at the University of Münster. He retired in 1989 and passed away shortly thereafter.

Aloys Krieg (born 1955) studied mathematics at the University of Münster. He was the last PhD student of Max Koecher. He has mainly worked on modular forms of several variables. In 1993, he was appointed to Paul Butzer's chair at RWTH Aachen University, where he served as Vice President for Education for 16 years. He retired in 2024.

Table of Contents

1 Elliptic functions.- 2 Geometry in the upper-half plane and the action of the modular group.- 3 Modular forms.- 4 The Hecke-Petersson theory.- 5 Theta series.

From the B&N Reads Blog

Customer Reviews