Emerging Technologies and Techniques in Porous Media / Edition 1

Emerging Technologies and Techniques in Porous Media / Edition 1

by Derek Ingham
     
 

View All Available Formats & Editions

ISBN-10: 1402018738

ISBN-13: 9781402018732

Pub. Date: 02/29/2004

Publisher: Springer Netherlands

The study of heat and fluid flow in fluid-saturated porous media is applicable in a very wide range of fields, with practical applications in modern industry and environmental areas, such as nuclear waste management, the construction of thermal insulators, geothermal power, grain storage and many more. The vast amount of theoretical and experimental work reported

Overview

The study of heat and fluid flow in fluid-saturated porous media is applicable in a very wide range of fields, with practical applications in modern industry and environmental areas, such as nuclear waste management, the construction of thermal insulators, geothermal power, grain storage and many more. The vast amount of theoretical and experimental work reported has attracted the attention of industrialists, engineers, applied mathematicians, chemical, civil, environmental, mechanical and nuclear engineers, physicists, food scientists, medical researchers, etc. This book covers the full range of theoretical, computational and experimental approaches to the subject, grouped into reviews of: fundamentals, stability, anisotropy, permeability and non-equilibrium, applications, and experimental porous media.

Product Details

ISBN-13:
9781402018732
Publisher:
Springer Netherlands
Publication date:
02/29/2004
Series:
Nato Science Series II: (closed), #134
Edition description:
2004
Pages:
507
Product dimensions:
6.10(w) x 9.25(h) x 0.05(d)

Table of Contents

Contributing authors. 1. Governing equations for laminar flows through porous media; D.B. Ingham. 2. Fundamentals of scale analysis, heatline visualization and the intersection of asymptotes; A. Bejan. 3. Modeling the flow through porous media; H.I. Ene. 4. Techniques for solving the boundary-layer equations; S.D. Harris, D.B. Ingham. 5. Some boundary-layer problems in convective flow in porous media; I. Pop. 6. Compressible fluid dynamics in porous media by the boundary element method; L. Skerget, R. Jecl. 7. Laplacian decomposition of steady free convection in porous media; A. Curteanu, et al. 8. Genetic algorithms and their application to the identification of hydraulic properties of rocks; N.S. Mera, et al. 9. Turbulent heat and mass transfer in porous media; M.J.S. de Lemos. 10. The mixed convection number for porous media flow; E. Holzbecher. 11. Sidewall heating in shallow cavities near the density maximum; D.M. Leppinen, D.A.S. Rees. 12. Active control of the onset of convection in porous medium by mechanical vibration; A. Mojtabi, et al. 13. Onset of oscillatory and stationary double-diffusive convection with a tilted porous enclosure; M. Mamou. 14. On stability analysis of Soret convection within a horizontal porous layer; M. Bourich, et al. 15. Nonlinear vortex instabilities in free convective boundary layers in porous media; D.A.S. Rees. 16. Thermal non-equilibrium free convection in a cavity filled with a non-Darcy porous medium; A.C. Baytas. 17. Entropy generation for free and forced convection in a porous cavity and a porous channel; A.C. Baytas. 18. Natural convection in anisotropic heterogeneous porous medium; R. Bennacer. 19. Effects of anisotropy on convection in horizontal and inclined porous layers; L. Storesletten. 20. Contribution of the thermal and molecular diffusion to convection in a vertical porous cavity; C.G. Jiang, et al. 21. Towards a physically based theory of high-concentration-gradient dispersion in porous media; R. Schotting, A.J. Landman. 22. Designed porous media; A. Bejan. 23. Modeling single-phase flows in micro heat exchangers; E. Mamut. 24. Axial and radial porous burners; A.A. Mohamad. 25. A porous medium model to investigate the red cell distribution effect on alveolar respiration; J.L. Lage, et al. 26. Ionic contamination and decontamination of porous media; S. Lorente, et al. Porous media and filtration; A.F. Miguel. 28. Experimental study of forced convection through microporous enhanced heat sinks; J.L. Lage, et al. 29. Two- and three-fluid retention in a porous medium for toluene by gamma-ray attenuation; A.F. Baytas. 30. Thermodynamics of fluids in mesoporous media; A.H. Reis. 31. Expansion scaling and elastic moduli of gas-fluidized magnetizable beds; J.Y. Hristov. 32. Porous media theory as basis for model of fouling layers formation in heat exchangers; T.V. Morosuk.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >