Energetics of Biological Macromolecules / Edition 1

Energetics of Biological Macromolecules / Edition 1

by Elsevier Science
     
 

ISBN-10: 0121821609

ISBN-13: 9780121821609

Pub. Date: 09/25/1995

Publisher: Elsevier Science

The critically acclaimed laboratory standard for forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerlyawaited, frequently consulted, and praised by researchers and reviewers alike. More than 250 volumes have been published (all of them still in print) and

Overview

The critically acclaimed laboratory standard for forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerlyawaited, frequently consulted, and praised by researchers and reviewers alike. More than 250 volumes have been published (all of them still in print) and much of the material is relevant even today—truly an essential publication for researchers in all fields of life sciences.

Key Features
• Thermodynamics as a tool for understanding molecular logic
• Thermal denaturation methods in the study of protein folding
• Predicting thermodynamic properties of RNA
• Sedimentation equilibrium as a thermodynamic tool
• Molecular volume
• Thermodynamic parameters from hydrogen exchange measurements

Product Details

ISBN-13:
9780121821609
Publisher:
Elsevier Science
Publication date:
09/25/1995
Series:
Methods in Enzymology Series
Edition description:
New Edition
Pages:
761
Product dimensions:
5.98(w) x 9.02(h) x (d)

Table of Contents

J.M. Holt and G.K. Ackers, Pathway of Allosteric Control as Revealed by Intermediate States of Hemoglobin.
Y. Huang and D.W. Bolen, Probes of Energy Transduction in Enzyme Catalysis.
V.A. Parsegian, R.P. Rand, and D.C. Rau, Macromolecules and Water: Probing with Osmotic Stress.
I. Wong and T.M. Lohman, Linkage of Protein Assembly to Protein-DNA Binding.
E. Di Cera, Q.D. Dang, Y. Ayala, and A. Vindigni, Linkage at Steady State: Allosteric Transitions of Thrombin.
E. Freire, Thermal Denaturation Methods in Study of Protein Folding.
L. Chen, R.L. Biltonen, and M.L. Johnson, Kinetics of Lipid Membrane Phase Transitions: A Volume Perturbation Calorimeter Study.
M.L. Doyle, G. Louie, P. Dal Monte, and T. Sokoloski, Tight Binding Affinities Determined from the Thermodynamic Linkage to Protons by Titration Calorimetry.
H.F. Fisher and N. Singh, Calorimetric Methods for Interpreting Protein-Ligand Interactions.
K.J. Breslauer, Extracting Thermodynamic Data from Equilibrium Melting Curves for Oligonucleotide Order-Disorder Transitions.
M.J. Serra and D.H. Turner, Predicting Thermodynamic Properties of RNA.
K.B. Hall and J.K. Kranz, Thermodynamics and Mutations in RNA-Protein Interactions.
D.E. Draper and T.C. Gluick, Melting Studies of RNA Unfolding and RNA-Ligand Interactions.
L. Jen-Jacobson, Structural-Perturbation Approaches to Thermodynamics of Site-Specific Protein-DNAInteractions.
Y. Bai, J.J. Englander, L. Mayne, J.S. Milne, and S.W. Englander, Thermodynamic Parameters from Hydrogen Exchange Measurements.
C.A. Royer, Application of Pressure to Biochemical Equilibria: The Other Thermodynamic Variable.
L.M. Rellick and W.J. Becktel, Molecular Volume.
C.R. Robinson and S.G. Sligar, Hydrostatic and Osmotic Pressure as Tools to Study Macromolecular Recognition.
T.M. Laue, Sedimentation Equilibrium as Thermodynamic Tool.
J. Yang and J. Carey, Footprint Phenotypes: Structural Models of DNA-Binding Proteins from Chemical Modification Analysis of DNA.
M. Perrella and I. Denisov, Low-Temperature Electrophoresis Methods.
M.R. Eftink, Use of Multiple Spectroscopic Methods to Monitor Equilibrium Unfolding of Proteins.
B. Garcia-Moreno, Probing Structural and Physical Basis of Protein Energetics Linked to Protons and Salt.
C.N. Pace, Evaluating Contribution of Hydrogen Bonding and Hydrophobic Bonding to Protein Folding.
B. Lee, Analyzing Solvent Reorganization and Hydrophobicity.
T.P. Creamer and G.D. Rose, Simple Force Field for Study of Peptide and Protein Conformational Properties.
M. Martinez-Carrion, A. Artigues, A. Berezov, M.L. Bianconi, A.M. Reyes, and A. Iriarte, Probes for Analysis of Stability of Different Variants of Aspartate Aminotransferase.
N.M. Allewell and V.J. LiCata, Thermodynamic Approaches to Understanding Aspartate Transcarbamylase.
R. Lumry, On the Interpretation of Data from Isothermal Processes.
Author Index.
Subject Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >