Engineering Mechanics Dynamics & Mastering Engineering Package / Edition 12

Engineering Mechanics Dynamics & Mastering Engineering Package / Edition 12

by Russell C. Hibbeler
     
 

ISBN-10: 0137032293

ISBN-13: 9780137032297

Pub. Date: 08/06/2009

Publisher: Prentice Hall

In his substantial revision of Engineering Mechanics, R.C. Hibbeler empowers students to succeed in the whole learning experience. Hibbeler achieves this by calling on his everyday classroom experience and his knowledge of how students learn inside and outside of lecture.

In addition to over 50% new homework problems, the twelfth edition introduces the

Overview

In his substantial revision of Engineering Mechanics, R.C. Hibbeler empowers students to succeed in the whole learning experience. Hibbeler achieves this by calling on his everyday classroom experience and his knowledge of how students learn inside and outside of lecture.

In addition to over 50% new homework problems, the twelfth edition introduces the new elements of Conceptual Problems, Fundamental Problems and MasteringEngineering, the most technologically advanced online tutorial and homework system.

This package contains Engineering Mechanics: Dynamics, 12e, and an access code for MasteringEngineering with the Pearson eText for Engineering Mechanics: Dynamics, 12e.

Product Details

ISBN-13:
9780137032297
Publisher:
Prentice Hall
Publication date:
08/06/2009
Edition description:
Older Edition
Product dimensions:
7.90(w) x 9.50(h) x 1.30(d)

Table of Contents

12

Kinematics of a

Particle 3

Chapter Objectives 3

12.1 Introduction 3

12.2 Rectilinear Kinematics: Continuous

Motion 5

12.3 Rectilinear Kinematics: Erratic Motion 19

12.4 General Curvilinear Motion 32

12.5 Curvilinear Motion: Rectangular

Components 34

12.6 Motion of a Projectile 39

12.7 Curvilinear Motion: Normal and Tangential

Components 53

12.8 Curvilinear Motion: Cylindrical

Components 67

12.9 Absolute Dependent Motion Analysis of

Two Particles 81

12.10 Relative-Motion of Two Particles Using

Translating Axes 87

13

Kinetics of a Particle:

Force and

Acceleration 107

Chapter Objectives 107

13.1 Newton’s Second Law of Motion 107

13.2 The Equation of Motion 110

13.3 Equation of Motion for a System of

Particles 112

13.4 Equations of Motion: Rectangular

Coordinates 114

13.5 Equations of Motion: Normal and

Tangential Coordinates 131

13.6 Equations of Motion: Cylindrical

Coordinates 144

*13.7 Central-Force Motion and Space

Mechanics 155

14

Kinetics of a Particle:

Work and Energy 169

Chapter Objectives 169

14.1 The Work of a Force 169

14.2 Principle of Work and Energy 174

14.3 Principle of Work and Energy for a System

of Particles 176

14.4 Power and Efficiency 192

14.5 Conservative Forces and Potential

Energy 201

14.6 Conservation of Energy 205

15

Kinetics of a Particle:

Impulse and

Momentum 221

Chapter Objectives 221

15.1 Principle of Linear Impulse and

Momentum 221

15.2 Principle of Linear Impulse and Momentum

for a System of Particles 228

15.3 Conservation of Linear Momentum for a

System of Particles 236

15.4 Impact 248

15.5 Angular Momentum 262

15.6 Relation Between Moment of a Force and

Angular Momentum 263

15.7 Principle of Angular Impulse and

Momentum 266

15.8 Steady Flow of a Fluid Stream 277

*15.9 Propulsion with Variable Mass 282

Review

1. Kinematics and Kinetics of a Particle 298

16

Planar Kinematics of a

Rigid Body 311

Chapter Objectives 311

16.1 Planar Rigid-Body Motion 311

16.2 Translation 313

16.3 Rotation about a Fixed Axis 314

16.4 Absolute Motion Analysis 329

16.5 Relative-Motion Analysis: Velocity 337

16.6 Instantaneous Center of Zero Velocity 351

16.7 Relative-Motion Analysis: Acceleration 363

16.8 Relative-Motion Analysis using Rotating

Axes 377

17

Planar Kinetics of a Rigid

Body: Force and

Acceleration 395

Chapter Objectives 395

17.1 Moment of Inertia 395

17.2 Planar Kinetic Equations of Motion 409

17.3 Equations of Motion: Translation 412

17.4 Equations of Motion: Rotation about a

Fixed Axis 425

17.5 Equations of Motion: General Plane

Motion 440

18

Planar Kinetics of a

Rigid Body: Work and

Energy 455

Chapter Objectives 455

18.1 Kinetic Energy 455

18.2 The Work of a Force 458

18.3 The Work of a Couple 460

18.4 Principle of Work and Energy 462

18.5 Conservation of Energy 477

19

Planar Kinetics of a Rigid

Body: Impulse and

Momentum 495

Chapter Objectives 495

19.1 Linear and Angular Momentum 495

19.2 Principle of Impulse and Momentum 501

19.3 Conservation of Momentum 517

*19.4 Eccentric Impact 521

Review

2. Planar Kinematics and Kinetics of a Rigid

Body 534

20

Three-Dimensional

Kinematics of a Rigid

Body 549

Chapter Objectives 549

20.1 Rotation About a Fixed Point 549

*20.2 The Time Derivative of a Vector Measured

from Either a Fixed or Translating-Rotating

System 552

20.3 General Motion 557

*20.4 Relative-Motion Analysis Using Translating

and Rotating Axes 566

21

Three-Dimensional

Kinetics of a Rigid

Body 579

Chapter Objectives 579

*21.1 Moments and Products of Inertia 579

21.2 Angular Momentum 589

21.3 Kinetic Energy 592

*21.4 Equations of Motion 600

*21.5 Gyroscopic Motion 614

21.6 Torque-Free Motion 620

CONTENTS X I I I

22

Vibrations 631

Chapter Objectives 631

*22.1 Undamped Free Vibration 631

*22.2 Energy Methods 645

*22.3 Undamped Forced Vibration 651

*22.4 Viscous Damped Free Vibration 655

*22.5 Viscous Damped Forced Vibration 658

*22.6 Electrical Circuit Analogs 661

Appendix

A. Mathematical Expressions 670

B. Vector Analysis 672

C. The Chain Rule 677

Fundamental Problems

Partial Solutions and

Answers 679

Answers to Selected

Problems 000

Index 000

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >