Engineering Optimization: Methods and Applications / Edition 2

Hardcover (Print)
Rent
Rent from BN.com
$82.17
(Save 50%)
Est. Return Date: 09/23/2014
Used and New from Other Sellers
Used and New from Other Sellers
from $65.75
Usually ships in 1-2 business days
(Save 60%)
Other sellers (Hardcover)
  • All (12) from $65.75   
  • New (6) from $90.45   
  • Used (6) from $65.75   

Overview

The classic introduction to engineering optimization theory and practice--now expanded and updated

Engineering optimization helps engineers zero in on the most effective, efficient solutions to problems. This text provides a practical, real-world understanding of engineering optimization. Rather than belaboring underlying proofs and mathematical derivations, it emphasizes optimization methodology, focusing on techniques and stratagems relevant to engineering applications in design, operations, and analysis. It surveys diverse optimization methods, ranging from those applicable to the minimization of a single-variable function to those most suitable for large-scale, nonlinear constrained problems. New material covered includes the duality theory, interior point methods for solving LP problems, the generalized Lagrange multiplier method and generalization of convex functions, and goal programming for solving multi-objective optimization problems. A practical, hands-on reference and text, Engineering Optimization, Second Edition covers:
* Practical issues, such as model formulation, implementation, starting point generation, and more
* Current, state-of-the-art optimization software
* Three engineering case studies plus numerous examples from chemical, industrial, and mechanical engineering
* Both classical methods and new techniques, such as successive quadratic programming, interior point methods, and goal programming

Excellent for self-study and as a reference for engineering professionals, this Second Edition is also ideal for senior and graduate courses on engineering optimization, including television and online instruction, as well as for in-plant training.

Read More Show Less

Product Details

  • ISBN-13: 9780471558149
  • Publisher: Wiley
  • Publication date: 5/19/2006
  • Edition description: New Edition
  • Edition number: 2
  • Pages: 688
  • Product dimensions: 6.14 (w) x 9.21 (h) x 1.44 (d)

Meet the Author

A. RAVINDRAN, PhD, is Professor of Industrial and Manufacturing Engineering at Penn State University in University Park, Pennsylvania.

K. M. RAGSDELL, PhD, is Professor of Engineering Management at the University of Missouri in Rolla, Missouri.

G. V. REKLAITIS, PhD, is Edward W. Comings Professor of Chemical Engineering at Purdue University in West Lafayette, Indiana.

Read More Show Less

Table of Contents

Preface.

1 Introduction to Optimization.

1.1 Requirements for the Application of Optimization Methods.

1.2 Applications of Optimization in Engineering.

1.3 Structure of Optimization Problems.

1.4 Scope of This Book.

References.

2 Functions of a Single Variable.

2.1 Properties of Single-Variable Functions.

2.2 Optimality Criteria.

2.3 Region Elimination Methods.

2.4 Polynomial Approximation or Point Estimation Methods.

2.5 Methods Requiring Derivatives.

2.6 Comparison of Methods.

2.7 Summary.

References.

Problems.

3 Functions of Several Variables.

3.1 Optimality Criteria.

3.2 Direct-Search Methods.

3.3 Gradient-Based Methods.

3.4 Comparison of Methods and Numerical Results.

3.5 Summary.

References.

Problems.

4 Linear Programming.

4.1 Formulation of Linear Programming Models.

4.2 Graphical Solution of Linear Programs in Two Variables.

4.3 Linear Program in Standard Form.

4.5 Computer Solution of Linear Programs.

4.5.1 Computer Codes.

4.6 Sensitivity Analysis in Linear Programming.

4.7 Applications.

4.8 Additional Topics in Linear Programming.

4.9 Summary.

References.

Problems.

5 Constrained Optimality Criteria.

5.1 Equality-Constrained Problems.

5.2 Lagrange Multipliers.

5.3 Economic Interpretation of Lagrange Multipliers.

5.4 Kuhn–Tucker Conditions.

5.5 Kuhn–Tucker Theorems.

5.6 Saddlepoint Conditions.

5.7 Second-Order Optimality Conditions.

5.8 Generalized Lagrange Multiplier Method.

5.9 Generalization of Convex Functions.

5.10 Summary.

References.

Problems.

6 Transformation Methods.

6.1 Penalty Concept.

6.2 Algorithms, Codes, and Other Contributions.

6.3 Method of Multipliers.

6.4 Summary.

References.

Problems.

7 Constrained Direct Search.

7.1 Problem Preparation.

7.2 Adaptations of Unconstrained Search Methods.

7.3 Random-Search Methods.

7.4 Summary.

References.

Problems.

8 Linearization Methods for Constrained Problems.

8.1 Direct Use of Successive Linear Programs.

8.2 Separable Programming.

8.3 Summary.

References.

Problems.

9 Direction Generation Methods Based on Linearization.

9.1 Method of Feasible Directions.

9.2 Simplex Extensions for Linearly Constrained Problems.

9.3 Generalized Reduced Gradient Method.

9.4 Design Application.

9.5 Summary.

References.

Problems.

10 Quadratic Approximation Methods for Constrained Problems.

10.1 Direct Quadratic Approximation.

10.2 Quadratic Approximation of the Lagrangian Function.

10.3 Variable Metric Methods for Constrained Optimization.

10.4 Discussion.

10.5 Summary.

References.

Problems.

11 Structured Problems and Algorithms.

11.1 Integer Programming.

11.2 Quadratic Programming.

11.3 Complementary Pivot Problems.

11.4 Goal Programming.

11.5 Summary.

References.

Problems.

12 Comparison of Constrained Optimization Methods.

12.1 Software Availability.

12.2 A Comparison Philosophy.

12.3 Brief History of Classical Comparative Experiments.

12.4 Summary.

References.

13 Strategies for Optimization Studies.

13.1 Model Formulation.

13.2 Problem Implementation.

13.3 Solution Evaluation.

13.4 Summary.

References.

Problems.

14 Engineering Case Studies.

14.1 Optimal Location of Coal-Blending Plants by Mixed-Integer

Programming.

14.2 Optimization of an Ethylene Glycol–Ethylene Oxide Process.

14.3 Optimal Design of a Compressed Air Energy Storage System.

14.4 Summary.

References.

Appendix A Review of Linear Algebra.

A.1 Set Theory.

A.2 Vectors.

A.3 Matrices.

A.3.1 Matrix Operations.

A.3.2 Determinant of a Square Matrix.

A.3.3 Inverse of a Matrix.

A.3.4 Condition of a Matrix.

A.3.5 Sparse Matrix.

A.4 Quadratic Forms.

A.4.1 Principal Minor.

A.4.2 Completing the Square.

A.5 Convex Sets.

Appendix B Convex and Concave Functions.

Appendix C Gauss–Jordan Elimination Scheme.

Author Index.

Subject Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)