Engineering Quantum Mechanics [NOOK Book]

Overview

There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. ...
See more details below
Engineering Quantum Mechanics

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$79.99
BN.com price
(Save 42%)$140.00 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.

Overview

There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Example programs based on Fortran 77 are provided for band-structures of zinc-blende and wurtzite quantum wells.
Read More Show Less

Editorial Reviews

From the Publisher
“The present book is intended for advanced undergraduate and graduate students in electrical engineering, physics, and material science. It also provides the necessary theoretical back-ground for researchers in optoelectronics or semiconductor devices.”  (Zentralblatt MATH, 2012)

"Ahn (quantum electronics, U. of Seoul) and Park (electronic engineering, Catholic U. of Daegu, Korea) present a textbook for graduate and advanced undergraduate students in electrical engineering, physics, and materials science and engineering on quantum mechanics as it is increasingly being used in these fields. It also provides the necessary theoretical background for researchers in optoelectronics or semiconductor devices." (Book News, 1 October 2011)

Read More Show Less

Product Details

  • ISBN-13: 9781118017814
  • Publisher: Wiley
  • Publication date: 8/4/2011
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 200
  • File size: 17 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Doyeol Ahn, PhD, is WB Distinguished Professor of Quantum Electronics in the Department of Electrical and Computer Engineering at the University of Seoul (Korea). A Fellow of the American Physical Society and an IEEE Fellow, he has coauthored more than 190 refereed journal papers and three book chapters, and holds seven U.S. patents to date.

Seoung-Hwan Park, PhD, is Professor in the Department of Electronics Engineering at the Catholic University of Daegu (Korea). He has written two book chapters and coauthored more than 160 refereed journal and conference papers.

Read More Show Less

Table of Contents

Preface vii

PART I Fundamentals 1

1 Basic Quantum Mechanics 3

1.1 Measurements and Probability 3

1.2 Dirac Formulation 4

1.3 Brief Detour to Classical Mechanics 8

1.4 A Road to Quantum Mechanics 14

1.5 The Uncertainty Principle 21

1.6 The Harmonic Oscillator 22

1.7 Angular Momentum Eigenstates 29

1.8 Quantization of Electromagnetic Fields 35

1.9 Perturbation Theory 38

Problems 41

References 43

2 Basic Quantum Statistical Mechanics 45

2.1 Elementary Statistical Mechanics 45

2.2 Second Quantization 51

2.3 Density Operators 54

2.4 The Coherent State 58

2.5 The Squeezed State 62

2.6 Coherent Interactions Between Atoms and Fields 68

2.7 The Jaynes–Cummings Model 69

Problems 71

References 72

3 Elementary Theory of Electronic Band Structure in Semiconductors 73

3.1 Bloch Theorem and Effective Mass Theory 73

3.2 The Luttinger–Kohn Hamiltonian 84

3.3 The Zinc Blende Hamiltonian 105

3.4 The Wurtzite Hamiltonian 114

3.5 Band Structure of Zinc Blende and Wurtzite Semiconductors 123

3.6 Crystal Orientation Effects on a Zinc Blende Hamiltonian 135

3.7 Crystal Orientation Effects on a Wurtzite Hamiltonian 152

Problems 168

References 169

PART II Modern Applications 171

4 Quantum Information Science 173

4.1 Quantum Bits and Tensor Products 173

4.2 Quantum Entanglement 175

4.3 Quantum Teleportation 178

4.4 Evolution of the Quantum State: Quantum Information Processing 180

4.5 A Measure of Information 183

4.6 Quantum Black Holes 184

Appendix A: Derivation of Equation (4.82) 202

Appendix B: Derivation of Equations (4.93) and (4.106) 203

Problems 204

References 205

5 Modern Semiconductor Laser Theory 207

5.1 Density Operator Description of Optical Interactions 209

5.2 The Time-Convolutionless Equation 211

5.3 The Theory of Non-Markovian Optical Gain in Semiconductor Lasers 223

5.4 Optical Gain of a Quantum Well Laser with Non-Markovian Relaxation and Many-Body Effects 232

5.5 Numerical Methods for Valence Band Structure in Nanostructures 235

5.6 Zinc Blende Bulk and Quantum Well Structures 252

5.7 Wurtzite Bulk and Quantum Well Structures 258

5.8 Quantum Wires and Quantum Dots 265

Appendix: Fortran 77 Code for the Band Structure 274

Problems 286

References 287

Index 289

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)