Enhanced College Physics (with PhysicsNOW) / Edition 7

Hardcover (Print)
Rent
Rent from BN.com
$62.24
(Save 83%)
Est. Return Date: 06/18/2014
Buy New
Buy New from BN.com
$319.56
Buy Used
Buy Used from BN.com
$241.84
(Save 35%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $5.66
Usually ships in 1-2 business days
(Save 98%)
Other sellers (Hardcover)
  • All (14) from $5.66   
  • New (4) from $175.00   
  • Used (10) from $5.66   

Overview

Open the door to the fascinating world of physics! The most fundamental of all natural sciences, physics will reveal to you the basic principles of the Universe. And while physics can seem challenging, its true beauty lies in the sheer simplicity of fundamental physical theories—theories and concepts that can enrich your view of the world around you. ENHANCED COLLEGE PHYSICS, VOLUME I gives you a clear and logical presentation of the basic concepts, and with its integrated media resources, you have the maximum opportunity for success! Each new text includes access to PHYSICSNOW, the ultimate web-based homework and tutorial system! This interactive learning system tailors itself to your needs in the course. It's like having a personal tutor available whenever you need it!

Read More Show Less

Product Details

  • ISBN-13: 9780495113690
  • Publisher: Cengage Learning
  • Publication date: 3/14/2006
  • Series: Available 2010 Titles Enhanced Web Assign Series
  • Edition description: 7TH PKG
  • Edition number: 7
  • Pages: 1136
  • Sales rank: 1,049,629
  • Product dimensions: 8.70 (w) x 11.00 (h) x 1.50 (d)

Meet the Author

Raymond A. Serway received his doctorate at Illinois Institute of Technology and is Professor Emeritus at James Madison University. In 2011, he was awarded an honorary doctorate degree from his alma mater, Utica College. He received the 1990 Madison Scholar Award at James Madison University, where he taught for 17 years. Dr. Serway began his teaching career at Clarkson University, where he conducted research and taught from 1967 to 1980. He was the recipient of the Distinguished Teaching Award at Clarkson University in 1977 and the Alumni Achievement Award from Utica College in 1985. As Guest Scientist at the IBM Research Laboratory in Zurich, Switzerland, he worked with K. Alex Müller, 1987 Nobel Prize recipient. Dr. Serway also was a visiting scientist at Argonne National Laboratory, where he collaborated with his mentor and friend, the late Sam Marshall. In addition to PHYSICS FOR SCIENTISTS AND ENGINEERS, Dr. Serway is the coauthor of PRINCIPLES OF PHYSICS, Fifth Edition; COLLEGE PHYSICS, Ninth Edition; ESSENTIALS OF COLLEGE PHYSICS; MODERN PHYSICS, Third Edition; and the high school textbook PHYSICS, published by Holt McDougal. In addition, Dr. Serway has published more than 40 research papers in the field of condensed matter physics and has given more than 60 presentations at professional meetings. Dr. Serway and his wife Elizabeth enjoy traveling, playing golf, fishing, gardening, singing in the church choir, and especially spending quality time with their four children, nine grandchildren, and a recent great-grandson.

Jerry S. Faughn earned his doctorate at the University of Mississippi. He is Professor Emeritus and former Chair of the Department of Physics and Astronomy at Eastern Kentucky University. He is coauthor of a nonmathematical physics text; a physical science text for general education students; and (with Dr. Serway) the high school textbook PHYSICS, published by Holt, Rinehart and Winston. He has taught courses ranging from the lower division to the graduate level, but his primary interest is in students just beginning to learn physics. He has been director of a number of NSF and state grants, many of which were devoted to the improvement of physics education. He believes that there is no greater calling than to be a teacher and an interpreter of physics for others.

Chris Vuille is an associate professor of physics at Embry-Riddle Aeronautical University, Daytona Beach, Florida, the world's premier institution for aviation higher education. He received his doctorate in physics at the University of Florida in 1989. While he has taught courses at all levels, including postgraduate, his primary interest and responsibility has been the delivery of introductory physics. He has received a number of awards for teaching excellence, including the Senior Class Appreciation Award (three times). He conducts research in general relativity, astrophysics, cosmology, and quantum theory and was a participant in the JOVE program, a special three-year NASA grant program during which he studied properties of neutron stars. His work has appeared in a number of scientific journals and in ANALOG SCIENCE FICTION/SCIENCE FACT magazine. In addition to this textbook, he is the coauthor of ESSENTIALS OF COLLEGE PHYSICS. Dr. Vuille enjoys playing tennis, swimming, and playing classical piano; he is a former chess champion of St. Petersburg and Atlanta. His wife, Dianne Kowing, is an optometrist for a local VA clinic. Teen daughter Kira Vuille-Kowing is a meteorology/communications double major at ERAU and a recent graduate of her father's first-year physics course. He has two sons—fifteen-year-old Christopher, a cellist and fisherman, and six-year-old James, an avid reader of Disney comics.

Charles A. Bennett received his Doctorate at North Carolina State University, and is Professor of Physics at the University of North Carolina at Asheville. His research interests include quantum and physical optics, and laser applications in environmental and fusion energy research. He has collaborated with Oak Ridge National Laboratory since 1983, where he is currently an adjunct research and development associate of the Advanced Laser and Optical Technology and Development group. In addition to his work in optics, Dr. Bennett has a long record of innovation in educational technology, particularly in the integration of active media into on-line homework. He is a past director of the UNCA Center for Teaching and Learning, and has received UNCA's most prestigious recognition for scholarship: the Ruth and Leon Feldman Professorship for 1996-1997.

Read More Show Less

Table of Contents

Part I: MECHANICS. 1. Introduction. Standards of Length, Mass, and Time. The Building Blocks of Matter. Dimensional Analysis. Uncertainty in Measurement and Significant Figures. Conversion of Units. Estimates and Order-of-Magnitude Calculations. Coordinate Systems. Trigonometry. Problem-Solving Strategy. 2. Motion in One Dimension. Displacement. Velocity. Acceleration. Motion Diagrams. One-Dimensional Motion with Constant Acceleration. Freely-Falling Objects. 3. Vectors and Two-Dimensional Motion. Vectors and Their Properties. Components of a Vector. Displacement, Velocity and Acceleration in Two Dimensions. Motion in Two Dimensions. Relative Velocity. 4. The Laws of Motion. Forces. Newton's First Law. Newton's Second Law. Newton's Third Law. Applications of Newton's Laws. Forces of Friction. 5. Energy. Work. Kinetic Energy and the Work-Energy Theorem. Gravitational Potential Energy. Spring Potential Energy. Systems and Energy Conservation. Power. Work Done by a Varying Force. 6. Momentum and Collisions. Momentum and Impulse. Conservation of Momentum. Collisions. Glancing Collisions. Rocket Propulsion. 7. Rotational Motion and the Law of Gravity. Angular Speed and Angular Acceleration. Rotational Motion Under Constant Angular Acceleration. Relations Between Angular and Linear Quantities. Centripetal Acceleration. Newtonian Gravitation. Kepler's Laws. 8. Rotational Equilibrium and Rotational Dynamics. Torque. Torque and the Two Conditions for Equilibrium. The Center of Gravity. Examples of Objects in Equilibrium. Relationship Between Torque and Angular Acceleration. Rotational Kinetic Energy. Angular Momentum. 9. Solids and Fluids. States of Matter. The Deformation of Solids. Density and Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces and Archimedes's Principle. Fluids in Motion. Other Applications of Fluid Dynamics. Surface Tension, Capillary Action, and Viscous Fluid Flow. Transport Phenomena. Part 2: THERMODYNAMICS. 10. Thermal Physics. Temperature and the Zeroth Law of Thermodynamics. Thermometers and Temperature Scales. Thermal Expansion of Solids and Liquids. Macroscopic Description of an Ideal Gas. The Kinetic Theory of Gases. 11. Energy in Thermal Processes. Heat and Internal Energy. Specific Heat. Calorimetry. Latent Heat and Phase Change. Energy Transfer. Global Warming and Greenhouse Gases. 12. The Laws of Thermodynamics. Work in Thermodynamic Processes. The First Law of Thermodynamics. Heat Engines and the Second Law of Thermodynamics. Entropy. Human Metabolism. Part 3: VIBRATIONS AND WAVES. 13. Vibrations and Waves. Hooke's Law. Elastic Potential Energy. Comparing Simple Harmonic Motion with Uniform Circular Motion. Position, Velocity, and Acceleration as a Function of Time. Motion of a Pendulum. Damped Oscillations. Waves. Frequency, Amplitude, and Wavelength. The Speed of Waves on Strings. Interference of Waves. Reflection of Waves. 14. Sound. Producing a Sound Wave. Characteristics of Sound Waves. The Speed of Sound. Energy and Intensity of Sound Waves. Spherical and Plane Waves. The Doppler Effect. Interference of Sound Waves. Standing Waves. Forced Vibrations and Resonance. Standing Waves in Air Columns. Beats. Quality of Sound. The Ear. Part 4: ELECTRICITY AND MAGNETISM. 15. Electric Forces and Electric Fields. Properties of Electric Charges. Insulators and Conductors. Coulomb's Law. The Electric Field. Electric Field Lines. Conductors in Electrostatic Equilibrium. The Millikan Oil-Drop Experiment. The Van de Graaff Generator. Electric Flux and Gauss's Law. 16. Electrical Energy and Capacitance. Potential Difference and Electric Potential. Electric Potential and Potential Energy Due to Point Charges. Potentials and Charged Conductors. Equipotential Surfaces. Applications. Capacitance. The Parallel-Plate Capacitor. Combinations of Capacitors. Energy Stored in a Charged Capacitor. Capacitors with Dielectrics. 17. Current and Resistance. Electric Current. A Microscopic View: Current and Drift Speed. Current and Voltage Measurements in Circuits. Resistance and Ohm's Law. Resistivity. Temperature Variation of Resistance. Superconductors. Electrical Energy and Power. Electrical Activity in the Heart. 18. Direct Current Circuits. Sources of emf. Resistors in Series. Resistors in Parallel. Kirchhoff's Rules and Complex DC Circuits. RC Circuits. Household Circuits. Electrical Safety. Conduction of Electrical Signals by Neurons. 19. Magnetism. Magnets. Earth's Magnetic Field. Magnetic Fields. Magnetic Force on a Current-Carrying Conductor. Torque on a Current Loop and Electric Motors. Motion of a Charged Particle in a Magnetic Field. Magnetic Field of a Long, Straight Wire and Ampère's Law. Magnetic Force Between Two Parallel Conductors. Magnetic Fields of a Current Loop and Solenoids. Magnetic Domains. 20. Induced Voltages and Inductance. Induced emf and Magnetic Flux. Faraday's Law of Induction. Motional emf. Lenz's Law Revisited (The Minus Sign in Faraday's Law). Generators. Self-Inductance. RL Circuits. Energy Stored in a Magnetic Field. 21. Alternating Current Circuits and Electromagnetic Waves. Resistors in an AC Circuit. Capacitors in an AC Circuit. Inductors in an AC Circuit. The RLC Series Circuit. Power in an AC Circuit. Resonance in a Series RLC Circuit. The Transformer. Maxwell's Predictions. Hertz's Confirmation of Maxwell's Predictions. Production of Electromagnetic Waves by an Antenna. Properties of Electromagnetic Waves. The Spectrum of Electromagnetic Waves. The Doppler Effect for Electromagnetic Waves. 22. Reflection and Refraction of Light. The Nature of Light. Reflection and Refraction. The Law of Refraction. Dispersion and Prisms. The Rainbow. Huygens's Principle. Total Internal Reflection. 23. Mirrors and Lenses. Flat Mirrors. Images Formed by Spherical Mirrors. Convex Mirrors and Sign Conventions. Images Formed by Refraction. Atmospheric Refraction. Thin Lenses. Lens and Mirror Aberrations. 24. Wave Optics. Conditions for Interference. Young's Double-Slit Interference. Change of Phase Due to Reflection. Interference in Thin Films. Using Interference to Read CD's and DVD's. Diffraction. Single-Slit Diffraction. The Diffraction Grating. Polarization of Light Waves. 25. Optical Instruments. The Camera. The Eye. The Simple Magnifier. The Compound Microscope. The Telescope. Resolution of Single-Slit and Circular Apertures. The Michelson Interferometer. 26. Relativity. Introduction. The Principle of Galilean Relativity. The Speed of Light. The Michelson-Morley Experiment. Einstein's Principle of Relativity. Consequences of Special Relativity. Relativistic Momentum. Relativistic Addition of Velocities. Relativistic Energy and the Equivalence of Mass and Energy. Pair Production and Annihilation. General Relativity. 27. Quantum Physics. Blackbody Radiation and Planck's Hypothesis. The Photoelectric Effect and the Particle Theory of Light. X-Rays. Diffraction of X-Rays by Crystals. The Compton Effect. The Dual Nature of Light and Matter. The Wave Function. The Uncertainty Principle. The Scanning Tunneling Microscope. 28. Atomic Physics. Early Models of the Atom. Atomic Spectra. The Bohr Theory of Hydrogen. Modification of the Bohr Theory. De Broglie Waves and the Hydrogen Atom. Quantum Mechanics and the Hydrogen Atom. The Spin Magnetic Quantum Number. Electron Clouds. The Exclusion Principle and the Periodic Table. Characteristic X-Rays. Atomic Transitions. Lasers and Holography. Energy Bands in Solids. Semiconductor Devices. 29. Nuclear Physics. Some Properties of Nuclei. Binding Energy. Radioactivity. The Decay Processes. Natural Radioactivity. Nuclear Reactions. Medical Applications of Radiation. Radiation Detectors. 30. Nuclear Energy and Elementary Particles. Nuclear Fission. Nuclear Reactors. Nuclear Fusion. Elementary Particles. The Fundamental Forces in Nature. Positrons and Other Antiparticles. Mesons and the Beginning of Particle Physics. Classification of Particles. Conservation Laws. Strange Particles and Strangeness. The Eightfold Way. Quarks. Colored Quarks. Electroweak Theory and the Standard Model. The Cosmic Connection. Problems and Perspectives.

Read More Show Less

Customer Reviews

Average Rating 5
( 1 )
Rating Distribution

5 Star

(1)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted June 15, 2007

    Beautifully Written Textbook.

    Concisely written text that will teach you all of the physics fundamentals. This is only an algebra/trigonometry based physics but it makes you see the world in which you live in, in a different perspective. This text has many biology applications. (probably the most I've ever seen in an elementary physics book). So it was written not just for the engineering/physical science majors, but also those studying biology/pre-med. The student solutions manual and study guide go great with the book, and will better prepare you for your exams.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)