Evolution: A Scientific American Reader / Edition 1

Paperback (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $1.99
Usually ships in 1-2 business days
(Save 90%)
Other sellers (Paperback)
  • All (25) from $1.99   
  • New (9) from $13.40   
  • Used (16) from $1.99   

Overview

From the Scopes “Monkey Trial” of 1925 to the court ruling against the Dover Area School Board’s proposed intelligent design curriculum in 2005, few scientific topics have engendered as much controversy—or grabbed as many headlines—as evolution. And since the debate shows no signs of abating, there is perhaps no better time to step back and ask: What is evolution? Defined as the gradual process by which something changes into a different and usually more complex and efficient form, evolution explains the formation of the universe, the nature of viruses, and the emergence of humans. A first-rate summary of the actual science of evolution, this Scientific American reader is a timely collection that gives readers an opportunity to consider evolution’s impact in various settings.

Divided into four sections that consider the evolution of the universe, cells, dinosaurs, and humans, Evolution brings together more than thirty articles written by some of the world’s most respected evolutionary scientists. As tour guides through the genesis of the universe and complex cells, P. James E. Peebles examines the evidence in support of an expanding cosmos, while Christian de Duve discusses the birth of eukaryotes. In an article that anticipated his book Full House, Stephen Jay Gould argues that chance and contingency are as important as natural selection for evolutionary change. And Ian Tatersall makes two fascinating contributions, submitting his view that the schematic of human evolution looks less like a ladder and more like a bush.

With the latest on what’s being researched at every level of evolutionary studies, from prospects of life on other planets to the inner working of cells, Evolution offers general readers an opportunity to update their knowledge on this hot topic while giving students an introduction to the problems and methodologies of an entire field of inquiry. 

Read More Show Less

Product Details

  • ISBN-13: 9780226742694
  • Publisher: University of Chicago Press
  • Publication date: 9/1/2006
  • Series: Scientific American Readers Series
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 312
  • Sales rank: 1,367,684
  • Product dimensions: 6.00 (w) x 9.00 (h) x 0.90 (d)

Meet the Author


Scientific American, the premier general-interest science magazine, reports the most important developments in modern science, medicine, and technology to more than three million readers worldwide. The oldest continuously published magazine in the United States, it has been at the forefront of science for more than 150 years.
Read More Show Less

Read an Excerpt

EVOLUTION

A SCIENTIFIC AMERICAN READER


THE UNIVERSITY OF CHICAGO PRESS

Copyright © 2006 Scientific American, Inc.
All right reserved.

ISBN: 978-0-226-74268-7



Chapter One

The Evolution of the Universe P. JAMES E. PEEBLES, DAVID N. SCHRAMM, EDWIN L. TURNER AND RICHARD G. KRON ORIGINALLY PUBLISHED IN OCTOBER 1994

At a particular instant roughly 15 billion years ago, all the matter and energy we can observe, concentrated in a region smaller than a dime, began to expand and cool at an incredibly rapid rate. By the time the temperature had dropped to 100 million times that of the sun's core, the forces of nature assumed their present properties, and the elementary particles known as quarks roamed freely in a sea of energy. When the universe had expanded an additional 1,000 times, all the matter we can measure filled a region the size of the solar system.

At that time, the free quarks became confined in neutrons and protons. After the universe had grown by another factor of 1,000, protons and neutrons combined to form atomic nuclei, including most of the helium and deuterium present today. All of this occurred within the first minute of the expansion. Conditions were still too hot, however, for atomic nuclei to capture electrons. Neutral atoms appeared in abundance only after the expansion had continued for 300,000 years and the universe was 1,000 times smaller than it is now. The neutral atoms then beganto coalesce into gas clouds, which later evolved into stars. By the time the universe had expanded to one fifth its present size, the stars had formed groups recognizable as young galaxies.

When the universe was half its present size, nuclear reactions in stars had produced most of the heavy elements from which terrestrial planets were made. Our solar system is relatively young: it formed five billion years ago, when the universe was two thirds its present size. Over time the formation of stars has consumed the supply of gas in galaxies, and hence the population of stars is waning. Fifteen billion years from now stars like our sun will be relatively rare, making the universe a far less hospitable place for observers like us.

Our understanding of the genesis and evolution of the universe is one of the great achievements of 20th-century science. This knowledge comes from decades of innovative experiments and theories. Modern telescopes on the ground and in space detect the light from galaxies billions of light-years away, showing us what the universe looked like when it was young. Particle accelerators probe the basic physics of the high-energy environment of the early universe. Satellites detect the cosmic background radiation left over from the early stages of expansion, providing an image of the universe on the largest scales we can observe.

Our best efforts to explain this wealth of data are embodied in a theory known as the standard cosmological model or the big bang cosmology. The major claim of the theory is that in the large-scale average the universe is expanding in a nearly homogeneous way from a dense early state. At present, there are no fundamental challenges to the big bang theory, although there are certainly unresolved issues within the theory itself. Astronomers are not sure, for example, how the galaxies were formed, but there is no reason to think the process did not occur within the framework of the big bang. Indeed, the predictions of the theory have survived all tests to date.

Yet the big bang model goes only so far, and many fundamental mysteries remain. What was the universe like before it was expanding? (No observation we have made allows us to look back beyond the moment at which the expansion began.) What will happen in the distant future, when the last of the stars exhaust the supply of nuclear fuel? No one knows the answers yet.

Our universe may be viewed in many lights-by mystics, theologians, philosophers or scientists. In science we adopt the plodding route: we accept only what is tested by experiment or observation. Albert Einstein gave us the now well-tested and accepted Theory of General Relativity, which establishes the relations between mass, energy, space and time. Einstein showed that a homogeneous distribution of matter in space fits nicely with his theory. He assumed without discussion that the universe is static, unchanging in the large-scale average [see "How Cosmology Became a Science," by Stephen G. Brush; Scientific American, August 1992].

In 1922 the Russian theorist Alexander A. Friedmann realized that Einstein's universe is unstable; the slightest perturbation would cause it to expand or contract. At that time, Vesto M. Slipher of Lowell Observatory was collecting the first evidence that galaxies are actually moving apart. Then, in 1929, the eminent astronomer Edwin P. Hubble showed that the rate a galaxy is moving away from us is roughly proportional to its distance from us.

The existence of an expanding universe implies that the cosmos has evolved from a dense concentration of matter into the present broadly spread distribution of galaxies. Fred Hoyle, an English cosmologist, was the first to call this process the big bang. Hoyle intended to disparage the theory, but the name was so catchy it gained popularity. It is somewhat misleading, however, to describe the expansion as some type of explosion of matter away from some particular point in space.

That is not the picture at all: in Einstein's universe the concept of space and the distribution of matter are intimately linked; the observed expansion of the system of galaxies reveals the unfolding of space itself. An essential feature of the theory is that the average density in space declines as the universe expands; the distribution of matter forms no observable edge. In an explosion the fastest particles move out into empty space, but in the big bang cosmology, particles uniformly fill all space. The expansion of the universe has had little influence on the size of galaxies or even clusters of galaxies that are bound by gravity; space is simply opening up between them. In this sense, the expansion is similar to a rising loaf of raisin bread. The dough is analogous to space, and the raisins, to clusters of galaxies. As the dough expands, the raisins move apart. Moreover, the speed with which any two raisins move apart is directly and positively related to the amount of dough separating them.

The evidence for the expansion of the universe has been accumulating for some 60 years. The first important clue is the redshift. A galaxy emits or absorbs some wavelengths of light more strongly than others. If the galaxy is moving away from us, these emission and absorption features are shifted to longer wavelengths-that is, they become redder as the recession velocity increases. This phenomenon is known as the redshift.

Hubble's measurements indicated that the redshift of a distant galaxy is greater than that of one closer to the earth. This relation, now known as Hubble's law, is just what one would expect in a uniformly expanding universe. Hubble's law says the recession velocity of a galaxy is equal to its distance multiplied by a quantity called Hubble's constant. The redshift effect in nearby galaxies is relatively subtle, requiring good instrumentation to detect it. In contrast, the redshift of very distant objects-radio galaxies and quasars-is an awesome phenomenon; some appear to be moving away at greater than 90 percent of the speed of light.

Hubble contributed to another crucial part of the picture. He counted the number of visible galaxies in different directions in the sky and found that they appear to be rather uniformly distributed. The value of Hubble's constant seemed to be the same in all directions, a necessary consequence of uniform expansion. Modern surveys confirm the fundamental tenet that the universe is homogeneous on large scales. Although maps of the distribution of the nearby galaxies display clumpiness, deeper surveys reveal considerable uniformity.

The Milky Way, for instance, resides in a knot of two dozen galaxies; these in turn are part of a complex of galaxies that protrudes from the so-called local supercluster. The hierarchy of clustering has been traced up to dimensions of about 500 million light-years. The fluctuations in the average density of matter diminish as the scale of the structure being investigated increases. In maps that cover distances that reach close to the observable limit, the average density of matter changes by less than a tenth of a percent.

To test Hubble's law, astronomers need to measure distances to galaxies. One method for gauging distance is to observe the apparent brightness of a galaxy. If one galaxy is four times fainter in the night sky than an otherwise comparable galaxy, then it can be estimated to be twice as far away. This expectation has now been tested over the whole of the visible range of distances.

Some critics of the theory have pointed out that a galaxy that appears to be smaller and fainter might not actually be more distant. Fortunately, there is a direct indication that objects whose redshifts are larger really are more distant. The evidence comes from observations of an effect known as gravitational lensing. An object as massive and compact as a galaxy can act as a crude lens, producing a distorted, magnified image (or even many images) of any background radiation source that lies behind it. Such an object does so by bending the paths of light rays and other electromagnetic radiation. So if a galaxy sits in the line of sight between the earth and some distant object, it will bend the light rays from the object so that they are observable [see "Gravitational Lenses," by Edwin L. Turner; Scientific American, July 1988]. During the past decade, astronomers have discovered more than a dozen gravitational lenses. The object behind the lens is always found to have a higher redshift than the lens itself, confirming the qualitative prediction of Hubble's law.

Hubble's law has great significance not only because it describes the expansion of the universe but also because it can be used to calculate the age of the cosmos. To be precise, the time elapsed since the big bang is a function of the present value of Hubble's constant and its rate of change. Astronomers have determined the approximate rate of the expansion, but no one has yet been able to measure the second value precisely.

Still, one can estimate this quantity from knowledge of the universe's average density. One expects that because gravity exerts a force that opposes expansion, galaxies would tend to move apart more slowly now than they did in the past. The rate of change in expansion is therefore related to the gravitational pull of the universe set by its average density. If the density is that of just the visible material in and around galaxies, the age of the universe probably lies between 12 and 20 billion years. (The range allows for the uncertainty in the rate of expansion.)

Yet many researchers believe the density is greater than this minimum value. So-called dark matter would make up the difference. A strongly defended argument holds that the universe is just dense enough that in the remote future the expansion will slow almost to zero. Under this assumption, the age of the universe decreases to the range of seven to 13 billion years.

To improve these estimates, many astronomers are involved in intensive research to measure both the distances to galaxies and the density of the universe. Estimates of the expansion time provide an important test for the big bang model of the universe. If the theory is correct, everything in the visible universe should be younger than the expansion time computed from Hubble's law.

These two timescales do appear to be in at least rough concordance. For example, the oldest stars in the disk of the Milky Way galaxy are about 9 billion years old-an estimate derived from the rate of cooling of white dwarf stars. The stars in the halo of the Milky Way are somewhat older, about 15 billion years-a value derived from the rate of nuclear fuel consumption in the cores of these stars. The ages of the oldest known chemical elements are also approximately 15 billion years-a number that comes from radioactive dating techniques. Workers in laboratories have derived these age estimates from atomic and nuclear physics. It is noteworthy that their results agree, at least approximately, with the age that astronomers have derived by measuring cosmic expansion.

Another theory, the steady state theory, also succeeds in accounting for the expansion and homogeneity of the universe. In 1946 three physicists in England-Fred Hoyle, Hermann Bondi and Thomas Gold-proposed such a cosmology. In their theory the universe is forever expanding, and matter is created spontaneously to fill the voids. As this material accumulates, they suggested, it forms new stars to replace the old. This steady-state hypothesis predicts that ensembles of galaxies close to us should look statistically the same as those far away. The big bang cosmology makes a different prediction: if galaxies were all formed long ago, distant galaxies should look younger than those nearby because light from them requires a longer time to reach us. Such galaxies should contain more short-lived stars and more gas out of which future generations of stars will form.

The test is simple conceptually, but it took decades for astronomers to develop detectors sensitive enough to study distant galaxies in detail. When astronomers examine nearby galaxies that are powerful emitters of radio wavelengths, they see, at optical wavelengths, relatively round systems of stars. Distant radio galaxies, on the other hand, appear to have elongated and sometimes irregular structures. Moreover, in most distant radio galaxies, unlike the ones nearby, the distribution of light tends to be aligned with the pattern of the radio emission.

Likewise, when astronomers study the population of massive, dense clusters of galaxies, they find differences between those that are close and those far away. Distant clusters contain bluish galaxies that show evidence of ongoing star formation. Similar clusters that are nearby contain reddish galaxies in which active star formation ceased long ago. Observations made with the Hubble Space Telescope confirm that at least some of the enhanced star formation in these younger clusters may be the result of collisions between their member galaxies, a process that is much rarer in the present epoch.

So if galaxies are all moving away from one another and are evolving from earlier forms, it seems logical that they were once crowded together in some dense sea of matter and energy. Indeed, in 1927, before much was known about distant galaxies, a Belgian cosmologist and priest, Georges Lemaître, proposed that the expansion of the universe might be traced to an exceedingly dense state he called the primeval "super-atom." It might even be possible, he thought, to detect remnant radiation from the primeval atom. But what would this radiation signature look like?

When the universe was very young and hot, radiation could not travel very far without being absorbed and emitted by some particle. This continuous exchange of energy maintained a state of thermal equilibrium; any particular region was unlikely to be much hotter or cooler than the average. When matter and energy settle to such a state, the result is a so-called thermal spectrum, where the intensity of radiation at each wavelength is a definite function of the temperature. Hence, radiation originating in the hot big bang is recognizable by its spectrum.

In fact, this thermal cosmic background radiation has been detected. While working on the development of radar in the 1940s, Robert H. Dicke, then at the Massachusetts Institute of Technology, invented the microwave radiometer-a device capable of detecting low levels of radiation. In the 1960s Bell Laboratories used a radiometer in a telescope that would track the early communications satellites Echo-1 and Telstar. The engineer who built this instrument found that it was detecting unexpected radiation. Arno A. Penzias and Robert W. Wilson identified the signal as the cosmic background radiation. It is interesting that Penzias and Wilson were led to this idea by the news that Dicke had suggested that one ought to use a radiometer to search for the cosmic background.

(Continues...)



Excerpted from EVOLUTION Copyright © 2006 by Scientific American, Inc.. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents


THE EVOLUTION OF THE UNIVERSE

The Evolution of the Universe
The First Stars in the Universe
Exploring Our Universe and Others
Searching for Life in Our Solar System
The Fate of Life in the Universe
Life's Rocky Start
Misconceptions about the Big Bang
The Evolution of the Earth

CELLULAR EVOLUTION

Uprooting the Tree of Life
The Birth of Complex Cells
Viral Quasispecies
How Cells Respond to Stress
Cell Communication: The Inside Story
Life, Death and the Immune System
Cybernetic Cells

DINOSAURS AND OTHER MONSTERS

Rulers of the Jurassic Seas
The Mammals That Conquered the Seas
Breathing Life into Tyrannosaurus rex
Madagascar's Mesozoic Secrets
Which Came First, the Feather or the Bird?
The Terror Birds of South America
The Evolution of Life on Earth

HUMAN EVOLUTION

An Ancestor to Call Our Own
Early Hominid Fossils from Africa
Planet of the Apes
Once We Were Not Alone
Out of Africa Again... and Again?
Who Were the Neandertals
Food for Thought
Skin Deep
The Evolution of Human Birth
Once Were Cannibals
If Humans Were Built to Last

Illustration Credits

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)