Evolutionary Computing in Advanced Manufacturing

Evolutionary Computing in Advanced Manufacturing

4.0 1
by Manoj Tiwari, Jenny A. Harding
     
 

View All Available Formats & Editions

This cutting-edge book covers emerging, evolutionary and nature inspired optimization techniques in the field of advanced manufacturing. The complexity of real life advanced manufacturing problems often cannot be solved by traditional engineering or computational methods. Hence, in recent years researchers and practitioners have proposed and developed new strands of

Overview

This cutting-edge book covers emerging, evolutionary and nature inspired optimization techniques in the field of advanced manufacturing. The complexity of real life advanced manufacturing problems often cannot be solved by traditional engineering or computational methods. Hence, in recent years researchers and practitioners have proposed and developed new strands of advanced, intelligent techniques and methodologies. Evolutionary computing approaches are introduced in the context of a wide range of manufacturing activities, and through the examination of practical problems and their solutions, readers will gain confidence to apply these powerful computing solutions. The initial chapters introduce and discuss the well established evolutionary algorithm, to help readers to understand the basic building blocks and steps required to successfully implement their own solutions to real life advanced manufacturing problems. In the later chapters, modified and improved versions of evolutionary algorithms are discussed. The book concludes with appendices which provide general descriptions of several evolutionary algorithms.

Product Details

ISBN-13:
9781118161876
Publisher:
Wiley
Publication date:
07/12/2011
Series:
Wiley-Scrivener , #73
Sold by:
Barnes & Noble
Format:
NOOK Book
Pages:
354
File size:
9 MB

Meet the Author

Manoj Tiwari is based at the Indian Institute of Technology, Kharagpur. He is an acknowledged research leader and has worked in the areas of evolutionary computing, applications, modeling and simulation of manufacturing system, supply chain management, planning and scheduling of automated manufacturing system for about 20 years.

Jenny A. Harding joined Loughborough University in 1992 after working in industry for many years. Her industrial experience includes textile production and engineering, and immediately prior to joining Loughborough University, she spent 7 years working in R&D at Rank Taylor Hobson Ltd., manufacturers of metrology instruments. Her experience is mostly in the areas of mathematics and computing for manufacturing.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >

Evolutionary Computing in Advanced Manufacturing 4 out of 5 based on 0 ratings. 1 reviews.
Boudville More than 1 year ago
Manufacturing is surely a most pragmatic of subjects. It by definition makes deliverables; often as quickly or as cheaply as possible. Tiwari and Harding's book is an eloquent testament to how evolutionary computing has moved from purely theoretical musings in computational biology to other sciences and now to this branch of engineering. The chapters also demonstrate how ever cheaper computing has made possible the intensive number crunching so necessary to implement the concepts. What the chapters explain is that the complexity of the sheer number of variables and the equations of constraint present in contemporary manufacturing applications might necessitate a search through this space via the massive and repeated shufflings of test solutions that are regarded as genes. Some of you with backgrounds in computing might ask why not try the simplex algorithm? But that is for problems with linear equations, and linearity cannot always be assumed. Chapter 2, 'Process Planning Through Ant Colony Optimisation', goes right into a problem involving the scheduling of different types of machines on a shop floor - a CNC lathe, a milling machine and forming and shaping machines. Where there are several instances of each. And each type can perform a given set of operations. This chapter is germane if you are new to evolutionary computing but have an extensive background in manufacturing because at the very least, the problem is quite understandable. The pseudocode of how the problem was tackled should also hopefully be straightforward to implement, as a good pedagogic way to get into this subject. As an aside, the authors of chapter 2 hail from the Indian Institute of Technology. The chapter is a nice demonstration of the combination of the well known Indian expertise in computing with perhaps not as well acknowledged advanced research in manufacturing. While chapter 2 was confined to the actual shop floor for manufacturing, chapter 4, 'Design for Supply Chain with Product Development Issues Using Cellular Particle Swarm Optimisation Technique', takes a broader look at a problem that threads through an entire supply chain. Here the issue is not how to make a single product but how to choose between 2 or maybe more product families. A merit of sticking with one product family is that the manufacturing of this involves common subsystem parts and process steps. This reuse or refactoring is highly desirable to reduce both design and manufacturing costs. But if you really want to delve into the guts of evolutionary computing, check out chapter 5, 'Genetic Algorithms with Chromosome Differentiation Based Approach for Process Plan Selection Problems'. At a deep level, it goes into the tweaking of bits in a representation of a chromosome that encapsulates information and values of variables. The other chapters operate at a higher view, whereas this chapter makes you contemplate directly how or what to represent and how the data is mutated and shuffled down through the generations. It should be said that not all the chapters are strictly about evolutionary computing. Chapter 7, 'Tool Selection in Flexible Manufacturing Systems: A Hybrid SA [Simulated Annealing]-Tabu Algorithm Based Approach', centres on the use of simulated annealing. The latter method arose out of condensed matter physics decades before the paradigms of evolutionary computing were applied. Yet the chapter reveals that simulated annealing is a closely allied idea and the c