Experimental Techniques in Low-Temperature Physics / Edition 4

Experimental Techniques in Low-Temperature Physics / Edition 4

by Guy K. White, Philip Meeson
     
 

View All Available Formats & Editions

ISBN-10: 0198514271

ISBN-13: 9780198514275

Pub. Date: 04/25/2002

Publisher: Oxford University Press

Intended as a beginner's guide for physicists involved in postgraduate studies in low-temperature physics (i.e. cryogenics), this work has maintained the lab handbook style of earlier editions, while revising the contents. White (CSIRO National Measurement Laboratory, Australia) and Meeson (H. H. Wills Physics Laboratory, U. of Bristol, UK) offer 11 chapters covering

Overview

Intended as a beginner's guide for physicists involved in postgraduate studies in low-temperature physics (i.e. cryogenics), this work has maintained the lab handbook style of earlier editions, while revising the contents. White (CSIRO National Measurement Laboratory, Australia) and Meeson (H. H. Wills Physics Laboratory, U. of Bristol, UK) offer 11 chapters covering the historical and scientific perspectives, production of temperatures to one K, thermometry, heat transfer, storage and handling of liquefied gases, temperature control, cryostats for 1-300 K, magnets, other techniques, and physical properties of solids. Annotation c. Book News, Inc., Portland, OR

Product Details

ISBN-13:
9780198514275
Publisher:
Oxford University Press
Publication date:
04/25/2002
Series:
Monographs on the Physics and Chemistry
Edition description:
REV
Pages:
296
Product dimensions:
6.10(w) x 9.10(h) x 0.70(d)

Table of Contents

1The historical and scientific perspective1
1.1Introduction1
1.2Thermodynamics2
1.3Cooling processes4
1.4Liquefying gases6
1.4.1Faraday and chlorine7
1.4.2Oxygen7
1.4.3Hydrogen9
1.4.4Helium9
1.5Expansion engines11
1.5.1Air11
1.5.2Helium11
1.6Beyond the classical age13
1.6.1Magnetic cooling14
1.6.2Dilution refrigeration14
1.6.3Combination refrigerators15
1.7Modern times15
2Production of temperatures to 1K16
2.1Introduction16
2.2Coolers using countercurrent heat exchangers17
2.2.1Pressure drop17
2.2.2Heat transfer18
2.2.3Efficiency and length19
2.2.4Construction20
2.2.5Other liquefier details21
2.3The Collins helium liquefier22
2.4Klimenko cycle22
2.5Coolers using turbo-expanders24
2.6Brayton cycle24
2.7Coolers using regenerative heat exchangers25
2.8Philips Stirling cycle26
2.9Gifford-McMahon27
2.10Pulse tube cooling29
2.11Vuilleumier cycle30
2.12Observations on cryocoolers31
2.13Magnetic cooling above 1 K31
2.14Gas impurities33
3Thermometry34
3.1Introduction34
3.1.1Sources35
3.1.2Some mileposts in history36
3.2The ITS-9037
3.3Measurement of thermodynamic temperature41
3.3.1Gas thermometry41
3.3.2Acoustic gas thermometry44
3.3.3Noise thermometry44
3.4Secondary thermometers46
3.5Vapour pressure thermometry46
3.5.1Introduction46
3.5.2Thermomolecular pressure difference48
3.5.3Helium48
3.5.4Hydrogen49
3.5.5Neon, argon, nitrogen and oxygen49
3.6Resistance thermometry50
3.6.1Introduction50
3.6.2Pure metals53
3.6.3Magnetic alloys56
3.6.4Semiconductors and thermistors57
3.6.5Oxide sensors61
3.6.6Junction diodes62
3.7Capacitance62
3.8Thermocouples64
3.9Magnetic susceptibility67
3.9.1Electronic susceptibility68
3.9.2Nuclear susceptibility70
3.10Nuclear orientation74
3.11[superscript 3]He melting curve75
3.12[superscript 3]He viscosity80
4Heat transfer82
4.1Introduction82
4.2Conduction of heat by a gas82
4.3Heat transfer through solids84
4.4Heat transfer by radiation87
4.5Other causes of heat transfer89
4.5.1Joule heating89
4.5.2Gas adsorption91
4.5.3Helium film creep and thermal oscillations91
4.5.4Mechanical vibrations92
4.5.5Inadequate anchoring of leads93
4.5.6Electrical leakage93
4.6Example of heat transfer calculation94
4.7Heat transfer through pressed contacts96
4.8Heat switches97
4.8.1General97
4.8.2Mechanical switches98
4.8.3Superconducting switches98
4.8.4Other switches99
5Storage and handling of liquefied gases100
5.1Storage vessels100
5.1.1Introduction100
5.1.2Danger and safety101
5.1.3Glass dewars103
5.1.4Metal dewars104
5.1.5'Plastic' vessels106
5.1.6Liquid helium dewars for research cryostats107
5.2Transfer tubes107
5.2.1Introduction107
5.2.2Liquid air, N[superscript 2], O[superscript 2]108
5.2.3Helium and hydrogen110
5.3Liquid-level detectors112
5.3.1Introduction112
5.3.2Depth gauges113
5.3.3Level detectors115
5.4Liquid-level controllers116
6Temperature control118
6.1Introduction118
6.2Basics119
6.2.1[superscript 3]He refrigerators121
6.2.2Dilution refrigerators121
6.3Time Constants122
6.4Control123
6.4.1Choice of time constants124
6.4.2Choice of loop gain125
6.5Stability125
6.6Non-linearities126
6.7Integral control127
6.8Derivative control128
6.9Setup of PID controllers129
6.10Practical circuitry130
6.11Commercial controllers133
7Cryostats for 1-300 K134
7.1Introduction134
7.2Cryostats for specific heat measurements136
7.3Cryostats for thermal conductivity measurements139
7.4Cryostats for capacitance dilatometry141
7.5Cryostats for electrical resistance measurements144
7.6Cryostats for optical and X-ray measurements144
7.7Magnetic susceptibility measurement147
7.8Dip-stick cryostats for storage dewars149
7.9Some other cryostats152
8Below 0.3 K153
8.1Introduction153
8.2Dilution refrigerators153
8.2.1Overview154
8.2.2Properties of 3 He and 4 He154
8.2.3Details of operation157
8.2.4Design features160
8.2.5Common faults164
8.3Magnetic cooling165
8.3.1Subsystem separation166
8.3.2The demagnetization cooling process167
8.3.3The experimental view169
8.4The quantitative approach170
8.4.1Nuclear paramagnetic materials172
8.4.2Thermal behaviour173
8.5Other aspects of magnetic cooling176
8.5.1Special problems176
8.5.2Heat switches177
8.5.3Multistage methods178
8.5.4Electronic paramagnets180
8.6Other techniques181
9Magnets182
9.1Introduction182
9.2Overview182
9.2.1Resistive magnets182
9.2.2Superconducting magnets183
9.2.3Hybrid magnets184
9.2.4Pulsed magnets184
9.2.5Other methods185
9.3Superconductivity185
9.4Magnet wire186
9.5Magnet construction188
9.6Magnet specifications189
9.7Persistent mode189
9.8[lambda]-plate refrigeration191
9.9Power supplies191
9.10Lead design for high currents192
9.11Magnet operation193
9.12Quenches194
9.13Small coils194
9.14Magnet calculations for small coils195
9.14.1Field profiles195
9.14.2Calculating fields196
10Other techniques197
10.1Introduction197
10.1.1High-vacuum systems197
10.1.2Pumping speed201
10.1.3Low-temperature leaks204
10.2Solders205
10.2.1Hard solders or silver solders205
10.2.2Soft solders206
10.2.3Welding207
10.2.4Low-melting-point solders207
10.2.5Special solders208
10.3Vacuum seals and cements208
10.3.1Metal-glass seals208
10.3.2Sealing cements and compounds209
10.3.3Demountable vacuum seals211
11Physical properties of solids213
11.1Introduction213
11.2Heat capacity213
11.2.1Introduction213
11.2.2Lattice heat capacity214
11.2.3Electronic heat capacity216
11.2.4Sources and estimates of data216
11.2.5Sample calculation of cooling requirements218
11.2.6Liquid helium temperatures218
11.3Thermal expansion219
11.3.1Introduction219
11.3.2Background220
11.3.3Data sources and estimates222
11.3.4A useful approximation224
11.4Electrical resistance of metals224
11.4.1Introduction224
11.4.2Scattering by lattice vibrations225
11.4.3Scattering by static imperfections227
11.4.4Data sources and estimates227
11.5Thermal conductivity228
11.5.1Introduction228
11.5.2Metals228
11.5.3Non-metals230
11.5.4Glasses and amorphous polymers232
11.5.5Alloys232
11.5.6Foams and powders233
11.5.7Data sources234
11.6Magnetic susceptibility234
Appendix A.Suppliers of cryogenic equipment237
Appendix B.Tables251
Common symbols261
References263
Index275

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >