Extrasolar Planets
284
Extrasolar Planets
284Paperback
-
SHIP THIS ITEMIn stock. Ships in 1-2 days.PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Related collections and offers
Overview
Product Details
| ISBN-13: | 9780521155601 |
|---|---|
| Publisher: | Cambridge University Press |
| Publication date: | 03/29/2012 |
| Series: | Canary Islands Winter School of Astrophysics |
| Pages: | 284 |
| Product dimensions: | 6.69(w) x 9.61(h) x 0.59(d) |
Read an Excerpt
Cambridge University Press
9780521868082 - Extrasolar Planets - XVI Canary Islands Winter School of Astrophysics Edited - by Hans Deeg, Juan Antonio Belmonte, and Antonio Aparicio
Excerpt
1. Overview of extrasolar planet
detection methods
LAURANCE. DOYLE
In this chapter we will describe in a general manner each planet detection method and examine the fundamental astrophysical parameters each technique measures as well as its present measurement limitations for the detection of inner giant planets, jovian outer planets, and Earthlike planets. We then outline several secondary detection methods that may be instituted in the near future with increased detection sensitivity. We then discuss the ranges of each detection method and sketch several cases in which additional parameters may be derived through the acquisition of data from several methods combined. In the final section we discuss habitable zones around M-dwarf systems as potential near-term targets for the detection of life-supporting planets.
1.1 Introduction
In the following sections an overview of the main methods of extrasolar planet detection is presented. This is not a historical review – an excellent review, for example, can be found in Perryman (2000) and the 469 references therein. It is also not an up-to-date listing of extrasolar planet detections or candidates; these can be found at the comprehensive site of theExtrasolar Planets Encyclopedia by J. Schneider (www.obspm.fr/encycl/encycl.html). In this chapter we do, however, describe in a general manner each detection method and examine the general astrophysical parameters each technique measures as well as its present measurement limitations. We mention some secondary detection methods that may find application in the near future and what additional parameters may be derived through the acquisition of data from several methods combined. We finally discuss M-dwarf star habitable zones, as these are likely to be the near-term targets for the detection of exobiology on extrasolar planets. This chapter is aimed, in explanatory detail, at the interested college student level.
We note that the detection parameters for the pulsar timing, radial velocity, astrometric imaging, reflected light and eclipsing binary timing methods depend, at any given time, on the orbital phase, t, of the extrasolar planet, which is a function of the geometry involved in that detection method. However, detectability depends on the maximum signal produced for a given method, and it is this that we formulate in the equations below. However, we shall point out at which phases this maximum occurs. In keeping with eclipsing binary protocol, the planetary orbital phase t = 0 degrees will be when the (darker) planet is in inferior conjunction, that is when it is closest to the observer.
1.2 Pulsar timing
Unexpectedly, the first planetary-mass objects detected around another star were closer to terrestrial-mass than to jovian-mass. The parent star was the pulsar PSR B1257+12, 500 parsecs distant, and the two planetary objects detected around it are a 2.8 Earth (projected) mass ( M_ plus ) body with a period of 98.22 days and a 3.4 M_ plus body with a period of 66.54 days (Wolszczan 1994; Wolszczan and Frail 1992). The precise radio pulse rates of pulsars (seconds to milliseconds) and their stability as timing ‘clocks’ (variations in pulse timing on the order of only about a trillionth of a second per year) allow variations in the position of the pulsar to be measured precisely. The variation in timing can occur due to a positional shift in the pulsar around the pulsar–planet barycentre. If such a second mass (planet) is in orbit around the pulsar, the two bodies will orbit around a mutual barycentre, each distance from the barycentre being determined directly by their mass-ratios, where and are the mass and distance (semi-major axis) from the barycentre to the centre of the pulsar and and are the mass and distance from the barycentre to the planet. The motion of the pulsar around the barycentre causes the addition of (or subtraction of) the light travel time across this distance, which will result in a delay (or early arrival) of the periodic variations in the timing of the pulsar pulses. For a planet in a circular orbit, the maximum amplitude of the delay time will be:
| Image not available in HTML version |
| Image not available in HTML version |
Time of arrival residuals (in microseconds) of 430 MHz signals from the 6.2-millisecond pulsar PSR (from Konacki and Wolszczan
If we define a typical close-in extrasolar giant planet (CEGP) as a 3 jovian-mass planet with a circular orbital semi-major axis (i.e. orbital radius) of 0.05 AU (astronomical unit), and a ‘Jupiter’ and an ‘Earth’ as planets with the mass and orbital location (distance from their star) of Jupiter and Earth in the Solar System, respectively, then the half-amplitude timing offsets for such planets around a typical pulsar (assuming the pulsar to be 1.35 solar masses) would be milliseconds (ms) for a CEGP, 1.65 seconds for a ‘Jupiter’, and 3 ms for an ‘Earth’. That is, these will be the expected maximum delays in the pulse arrival times at a planetary orbital phase degrees.
1.3 Periodic radial velocity variations
The radial velocity or ‘Doppler shift’ method has been the most successful extrasolar planet detection method to date, detecting the vast majority of planets as of this writing. The first extrasolar planets around solar-type stars were discovered in this way (Mayor and Queloz 1995; see also Marcy and Butler 1998 and reference therein). Radial velocity variations again cause a wobble in the parent star, but the stellar light flux is generally very constant, so that timing of variations cannot be used to detect this stellar offset around the star–planet barycentre. However, very high precision spectral line measurements (one part in a hundred millionth of a spectral line width) can be performed by superimposing a comparison spectrum with many lines (like an iodine cell in the light path at the observatory) on to the stellar spectrum for a precise measurement of periodic movement in the star’s spectral lines.
The stellar spectral lines will move periodically redward or blueward due to the Doppler shift by , caused by the periodic motion, with a maximum velocity of the star about the star–planet barycentre. Again, the spectral line variations only measure the component of the motion directly towards or away from the observer, and hence the mass of the body (planet) causing the reflex motion of the star is a minimum mass measurement for the planet, . The maximum amplitude of this periodic radial velocity variation is given by:
| Image not available in HTML version |
The precision possible for this detection method is about 1 m/s, this limit imposed by intrinsic stellar surface fluctuations – i.e., variations present in even the most stable solar-type stars (see Figure 1.2). For a CEGP the radial velocity amplitude will be about 56 m/s, for a ‘Jupiter’ about 13 m/s, and for an ‘Earth’ about 0.1 m/s. Thus this method may not be expected to detect Earthlike planets around solar-like stars but can, however, detect any jovian-mass bodies within a star’s circumstellar habitable zone (CHZ).1 Hypothetical Earth-sized moons around such bodies have been suggested as being of interest to exobiologists. The detection of Jupiterlike planets are of interest both because of their comparability with our own Solar System as well as the ability of jovian-type planets to remove cometary debris, serving as a possibly necessary ‘shield’ for any biosystems developing on the inner terrestrial planets of the star system. This method is also, at present, limited to detection of planets around fairly stable, single star systems as the measurement of these radial velocity variations demands such high spectral line precision measurements.
| Image not available in HTML version |
Figure 1.2 A A Neptune-mass planet orbiting the nearby 0.41 solar-mass M-dwarf GJ 436 (from Butler et al. 2004). The 18.1 metre/second variation in the spectral lines of the star with a period of 2.644 days is caused by a planet with a projected mass of about 1.2 Neptune-masses.
1.4 Gravitational microlensing
Due to general relativistic effects of bending spacetime, a star moving very close to alignment with a background star will bend – that is, focus – the light of the background star, causing a temporary increase in the combined brightness of the stars by amplifying the light from the background star. The phenomenon, first observed with galaxies, is known as gravitational lensing, A perfect stellar alignment will cause symmetric images around the lensing star; this is known as the ‘Einstein ring’ (or sometimes an ‘Einstein cross’). The Einstein ring radius is given by:
| Image not available in HTML version |
| Image not available in HTML version |
Figure 1.3 The light curve of OGLE-2005-BLG-071 (adapted from Udalski et al. 2005), showing a binary peak, indicative of the binary nature of this microlensing event, where both a star and a planet move in front of a background star. A magnification of the three peaks (the middle one with a low amplitude) is shown in the inset in the upper left. The bottom right inset shows the caustic surfaces (closed-curve regions of very high magnification) consistent with a binary lens mass ratio of . From an analysis of parallax effects in the wings of the microlensing event, the lensing stellar mass is constrained to be between 0.5 and 0.08 solar masses, at a distance between 1.5 and 5 kiloparsecs, giving a planetary mass from 0.05 to 4 Jupiter masses.
The probability of alignment among two stars is, even in the Galactic Centre, only about one in , but once a star is aligned with another star the probability that a planet may also cause an amplification that exceeds 5% of the brightness of the star’s amplification itself becomes about one in five (Schneider et al. 1999). For this superposition of a brightening due to a planet on top of that due to the amplified star, the term M_* L becomes the mass of the planet, Mp in Eq. ().
The duration of a microlensing event is given by:
| Image not available in HTML version |
1.5 Astrometry
Astrometry is perhaps the oldest method to search for extrasolar planets, several having been reported in the mid-twentieth century. This method measures a periodic variation in the position of the star on the ‘plane of the sky’, subtracting out the star’s apparent motion due to the yearly parallax motion and the projection of its real proper motion through space. The motion of a star around the star–planet barycentre thus describes an elliptical motion with semi-major axis (in arcseconds) of:
| Image not available in HTML version |
| Image not available in HTML version |
Astrometric deviations on the plane of the sky measured by the Hubble Space Telescope Fine Guidance Sensor in fringe-tracking mode (from Benedict et al. 2002). The best fits to the astrometric variations of 0.25 milliarcseconds (the inner ellipsoid, with measurement errors indicated by the crosses) of the star Gliese 876 (with a parallactic mass of about 0.32 solar masses) gives a planetary orbital inclination of about 84 degrees, and thus a planet mass of about 1.89 jovian masses.
For the full amplitude of a CEGP the astrometric offset on a solar-type star at a distance of 5 pc would be about 0.03 milliarcseconds. For a ‘Jupiter’ it would be about 1 milliarcsecond, and for an ‘Earth’ the offset would be about 0.6 microarcseconds. This technique can be extended to search for extrasolar planets around radio-emitting stars using very long baseline radio interferometry (see Perryman 2000). Upcoming wide field searches for transiting planets (for example, the NASA Kepler mission) may also allow astrometric searches for planets to take place using the same photometric data, since the pointing precision as well as the photometric centroiding of star images should be near the 1 milliarcsecond precision required for astrometry. Near-term spacecraft missions such as SIM (Space Interferometry Mission) will be specifically designed to optimize astrometric measurements both for stellar parallax determinations and the detection of extrasolar planets in the solar neighbourhood astrometrically. SIM should be able to detect nearby extrasolar planets while mapping exact distances to stars by using interferometry to accurately measure astrometric wobbles of stars, caused by orbiting planets, to about one microarcsecond in angular resolution.
| Image not available in HTML version |
(a) A star that is ten-thousand times brighter than a companion planet at 0.2 arcsecond separation within the halo of the star (faint rings) with ideal apodization (from Codona and Angel 2004). (b) The system with low-order residuals in the nulling process. (c) Additional destructive interference using an anti-halo technique. (d) Same process as (c) but with spatial light modulation.
1.6 Imaging
Direct imaging of an extrasolar planet at visible wavelengths depends on the reflected light from the star that the planet produces which, in turn, depends on its distance from the star, the planet’s size, and the nature of its atmosphere (i.e. the product of the geometric albedo, A, and particle phase function , which is a measure of the light-scattering nature of the particles in the planetary atmosphere, such as a Lambertian function or, more likely, a steeper function of viewing angle). The ratio of brightness of the planet to the star is the important factor as the planet, even at a reasonably large angular distance, , from the star, will be ‘lost’ in the brightness of the diffraction rings of the star as imaged by a telescope (Jupiter viewed from Alpha Centauri would be about 4 arcseconds in angular distance away from the Sun, but typical angular distances of exoplanets are much smaller). The brightness ratio of planet-to-star is:
| Image not available in HTML version |
1.7. Radio flux
Jovian extrasolar planets with sufficient magnetic field (i.e. rotation rates and metallic cores to produce a dynamo) can emit significant flux at radio wavelengths. The flux produced by a planet can be characterized by: where is the radio frequency being observed, is the radio flux from the planet, and is the distance to the star system. Jupiter, for example, would produce a flux density of about 0.3 Jy (micro-Janskys) at a distance of 4 parsecs at a wavelength of 1 mm (synchrotron radiation; Jones 1994). A CEGP at this distance may be expected to produce less than about 0.03 Jy of flux due to being tidally locked in rotation with periods more on the order of several days, thus decreasing the dynamo effect. An Earthlike planet may also be expected to produce a similar strength signature to a CEGP (see Figure 1.6).
For interferometric detection techniques, the flux ratio between that of the planet and the star, F* , at a given detection frequency and time is the important limiting criterion: where the time dependence refers to both the radio fluctuations in the star and planet, and also to the planet’s orbital position for maximum angular separation from the star (i.e. elongation at orbital phases of and 270 degrees for inclinations not too close to zero degrees).
| Image not available in HTML version |
Theoretical ‘burst’ flux densities for 106 extrasolar planets (from Lazio et al. 2004). The range of expected frequencies is given with their expected flux densities (in milli-Janskys).
At 10 MHz this ratio, for a jovian planet around a solar-type star, is about 03 during active phase, but could be as high as 4 during a typical quiet starspot cycle – that is, the planet is brighter than the star at this time! However, interstellar electrons add substantial noise to the detection of flux at this wavelength over any appreciable distance. This is even more the case at lower frequencies. However, at a frequency of about 100 kHz the flux ratio of a jovian-type planet to its star could be as high as 100 during active stellar starspot phases, and as high as 2000 at the quiescent phase of the stellar activity cycle. The proposed square kilometre array (SKA) may have some possibilities of detecting the nearest jovian-type planets in this way. The SKA would be an array of centimetre-to-metre wavelength radio telescopes making up a total collecting area of one million square metres with 50% of the collecting area within five square kilometres (for sensitivity), 25% within 150 kilometres (intermediate resolution), and the remaining 25% of the array out to as far as 3000 kilometres for very high angular resolution.
Current radio technology on Earth emits at narrow-band (less than 1 Hertz wide) microwave frequencies in the range 1–10 GHz, and such signals can be many millions of times more powerful than the natural flux from the Sun. This is the basis for the radio searches for extraterrestrial intelligence (SETI) projects (Tarter, 2001). Having but one example of such technological development, constraints on the expected success of detecting such signals are few. One can nevertheless state that at present such SETI projects remain the most unambigous way proposed to detect exobiology since no source in interstellar space is known to produce such narrow-band radio signals (OH masers having a bandpass of several hundred hertz, for example).
© Cambridge University Press