Fabrication Engineering at the Micro- and Nanoscale / Edition 4

Paperback (Print)
Rent from BN.com
(Save 60%)
Est. Return Date: 11/15/2014
Used and New from Other Sellers
Used and New from Other Sellers
from $109.93
Usually ships in 1-2 business days
(Save 3%)
Other sellers (Paperback)
  • All (6) from $109.93   
  • New (5) from $109.93   
  • Used (1) from $116.35   


Designed for advanced undergraduate or first-year graduate courses in semiconductor or microelectronic fabrication, Fabrication Engineering at the Micro- and Nanoscale, Fourth Edition, covers the entire basic unit processes used to fabricate integrated circuits and other devices.

With many worked examples and detailed illustrations, this engaging introduction provides the tools needed to understand the frontiers of fabrication processes.

Read More Show Less

Editorial Reviews

From the Publisher

"This is one of the best texts in the field. It provides the most complete coverage of fabrication techniques."--Xian-An Cao, West Virginia University

"I like Campbell's style and enjoy reading the text. The material is appropriate for the intended audience and there are good summaries of background material."--Trevor Thornton, Arizona State University

Read More Show Less

Product Details

Meet the Author

Stephen A. Campbell is the Bordeau Professor of Electrical and Computer Engineering at the University of Minnesota and a fellow of IEEE.

Read More Show Less

Table of Contents

* = This section provides background material.
** = This section contains advanced material and can be omitted without loss of the basic content of the course.


Chapter 1. An Introduction to Microelectronic Fabrication
1.1 Microelectronic Technologies: A Simple Example
1.2 Unit Processes and Technologies
1.3 A Roadmap for the Course
1.4 Summary

Chapter 2. Semiconductor Substrates
2.1 Phase Diagrams and Solid Solubility*
2.2 Crystallography and Crystal Structure*
2.3 Crystal Defects
2.4 Czochralski Growth
2.5 Bridgman Growth of GaAs
2.6 Float Zone and Other Growth
2.7 Wafer Preparation and Specifications
2.8 Summary and Future Trends


Chapter 3. Diffusion
3.1 Fick's Diffusion Equation in One Dimension
3.2 Atomistic Models of Diffusion
3.3 Analytic Solutions of Fick's Law
3.4 Diffusion Coefficients for Common Dopants
3.5 Analysis of Diffused Profiles
3.6 Diffusion in SiO
3.7 Simulations of Diffusion Profiles
3.8 Summary

Chapter 4. Thermal Oxidation
4.1 The Deal-Grove Model of Oxidation
4.2 The Linear and Parabolic Rate Coefficients
4.3 The Initial Oxidation Regime
4.4 The Structure of SiO2
4.5 Oxide Characterization
4.6 The Effects of Dopants During Oxidation and Polysilicon Oxidation
4.7 Silicon Oxynitrides
4.8 Alternative Gate Insulators**
4.9 Oxidation Systems
4.10 Numeric Oxidations**
4.11 Summary

Chapter 5. Ion Implantation
5.1 Idealized Ion Implantation Systems
5.2 Coulomb Scattering*
5.3 Vertical Projected Range
5.4 Channeling and Lateral Projected Range
5.5 Implantation Damage
5.6 Shallow Junction Formation**
5.7 Buried Dielectrics**
5.8 Ion Implantation Systems: Problems and Concerns
5.9 Numerical Implanted Profiles**
5.10 Summary

Chapter 6. Rapid Thermal Processing
6.1 Gray Body Radiation, Heat Exchange, and Optical Absorption
6.2 High Intensity Optical Sources and Chamber Design
6.3 Temperature Measurement
6.4 Thermoplastic Stress*
6.5 Rapid Thermal Activation of Impurities
6.6 Rapid Thermal Processing of Dielectrics
6.7 Silicidation and Contact Formation
6.8 Alternative Rapid Thermal Processing Systems
6.9 Summary


Chapter 7. Optical Lithography
7.1 Lithography Overview
7.2 Diffraction*
7.3 The Modulation Transfer Function and Optical Exposures
7.4 Source Systems and Spatial Coherence
7.5 Contact/Proximity Printers
7.6 Projection Printers
7.7 Advanced Mask Concepts**
7.8 Surface Reflections and Standing Waves
7.9 Alignment
7.10 Summary

Chapter 8. Photoresists
8.1 Photoresist Types
8.2 Organic Materials and Polymers*
8.3 Typical Reactions of DQN Positive Photoresist
8.4 Contrast Curves
8.5 The Critical Modulation Transfer Function
8.6 Applying and Developing Photoresist
8.7 Second-Order Exposure Effects
8.8 Advanced Photoresists and Photoresist Processes**
8.9 Summary

Chapter 9. Nonoptical Lithographic Techniques**
9.1 Interactions of High Energy Beams with Matter*
9.2 Direct-Write Electron Beam Lithography Systems
9.3 Direct-Write Electron Beam Lithography: Summary and Outlook
9.4 X-ray and EUV Sources*
9.5 Proximity X-ray Exposure Systems
9.6 Membrane Masks for Proximity X-ray
9.7 EUV Lithography
9.8 Projection Electron Beam Lithography (SCALPEL)
9.9 E-beam and X-ray Resists
9.10 Radiation Damage in MOS Devices
9.11 Soft Lithography and Nanoimprint Lithography
9.12 Summary

Chapter 10. Vacuum Science and Plasmas
10.1 The Kinetic Theory of Gases*
10.2 Gas Flow and Conductance
10.3 Pressure Ranges and Vacuum Pumps
10.4 Vacuum Seals and Pressure Measurement
10.5 The DC Glow Discharge*
10.6 RF Discharges
10.7 High Density Plasmas
10.8 Summary

Chapter 11. Etching
11.1 Wet Etching
11.2 Chemical Mechanical Polishing
11.3 Basic Regimes of Plasma Etching
11.4 High Pressure Plasma Etching
11.5 Ion Milling
11.6 Reactive Ion Etching
11.7 Damage in Reactive Ion Etching**
11.8 High Density Plasma (HDP) Etching
11.9 Liftoff
11.10 Summary


Chapter 12. Physical Deposition: Evaporation and Sputtering
12.1 Phase Diagrams: Sublimation and Evaporation*
12.2 Deposition Rates
12.3 Step Coverage
12.4 Evaporator Systems: Crucible Heating Techniques
12.5 Multicomponent Films
12.6 An Introduction to Sputtering
12.7 Physics of Sputtering*
12.8 Deposition Rate: Sputter Yield
12.9 High Density Plasma Sputtering
12.10 Morphology and Step Coverage
12.11 Sputtering Methods
12.12 Sputtering of Specific Materials
12.13 Stress in Deposited Layers
12.14 Summary

Chapter 13. Chemical Vapor Deposition
13.1 A Simple CVD System for the Deposition of Silicon
13.2 Chemical Equilibrium and the Law of Mass Action*
13.3 Gas Flow and Boundary Layers*
13.4 Evaluation of the Simple CVD System
13.5 Atmospheric CVD of Dielectrics
13.6 Low Pressure CVD of Dielectrics and Semiconductors in Hot Wall Systems
13.7 Plasma-enhanced CVD of Dielectrics
13.8 Metal CVD**
13.9 Atomic Layer Deposition
13.10 Electroplating Copper
13.11 Summary

Chapter 14. Epitaxial Growth
14.1 Wafer Cleaning and Native Oxide Removal
14.2 The Thermodynamics of Vapor Phase Growth
14.3 Surface Reactions
14.4 Dopant Incorporation
14.5 Defects in Epitaxial Growth
14.6 Selective Growth*
14.7 Halide Transport GaAs Vapor Phase Epitaxy
14.8 Incommensurate and Strained Layer Heteroepitaxy
14.9 Metal Organic Chemical Vapor Deposition (MOCVD)
14.10 Advanced Silicon Vapor Phase Epitaxial Growth Techniques
14.11 Molecular Beam Epitaxy Technology
14.12 BCF Theory**
14.13 Gas Source MBE and Chemical Beam Epitaxy**
14.14 Summary


Chapter 15. Device Isolation, Contacts, and Metallization
15.1 Junction and Oxide Isolation
15.2 LOCOS Methods
15.3 Trench Isolation
15.4 Silicon-on-Insulator Isolation Techniques
15.5 Semi-insulating Substrates
15.6 Schottky Contacts
15.7 Implanted Ohmic Contacts
15.8 Alloyed Contacts
15.9 Multilevel Metallization
15.10 Planarization and Advanced Interconnect
15.11 Summary

Chapter 16. CMOS Technologies
16.1 Basic Long-Channel Device Behavior
16.2 Early MOS Technologies
16.3 The Basic 3-┬Ám Technology
16.4 Device Scaling
16.5 Hot Carrier Effects and Drain Engineering
16.6 Latchup
16.7 Shallow Source/Drains and Tailored Channel Doping
16.8 The Universal Curve and Advanced CMOS
16.9 A Nanoscale CMOS Process
16.10 Nonplanar CMOS
16.11 Summary

Chapter 17. Other Transistor Technologies
17.1 Basic MESFET Operation
17.2 Basic MESFET Technology
17.3 Digital Technologies
17.4 MMIC Technologies
17.5 MODFETs
17.6 Review of Bipolar Devices: Ideal and Quasi-ideal Behavior
17.7 Performance of BJTs
17.8 Early Bipolar Processes
17.9 Advanced Bipolar Processes
17.10 BiCMOS
17.11 Thin Film Transistors
17.12 Summary

Chapter 18. Optoelectronic and Solar Technologies
18.1 Optoelectronic Devices Overview
18.2 Direct-Gap Inorganic LEDs
18.3 Polymer/Organic Light-Emitting Diodes
18.4 Lasers
18.5 Photovoltaic Devices Overview
18.6 Silicon Based Photovoltaic Device Fabrication
18.7 Other Photovoltaic Technologies
18.8 Summary

Chapter 19. MEMS
19.1 Fundamentals of Mechanics
19.2 Stress in Thin Films
19.3 Mechanical-to-Electrical Transduction
19.4 Mechanics of Common MEMS Devices
19.5 Bulk Micromachining Etching Techniques
19.6 Bulk Micromachining Process Flow
19.7 Surface Micromachining Basics
19.8 Surface Micromachining Process Flow
19.9 MEMS Actuators
19.10 High Aspect Ratio Microsystems Technology (HARMST)
19.11 Microfluidics
19.12 Summary

Appendix I. Acronyms and Common Symbols
Appendix II. Properties of Selected Semiconductor Materials
Appendix III. Physical Constants
Appendix IV. Conversion Factors
Appendix V. Some Properties of the Error Function
Appendix VI. F Values

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)