Feature Extraction, Construction and Selection: A Data Mining Perspective / Edition 1 by Huan Liu | 9780792381969 | Hardcover | Barnes & Noble
Feature Extraction, Construction and Selection: A Data Mining Perspective / Edition 1

Feature Extraction, Construction and Selection: A Data Mining Perspective / Edition 1

by Huan Liu
     
 

ISBN-10: 0792381963

ISBN-13: 9780792381969

Pub. Date: 07/01/1998

Publisher: Springer US

There is a broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data pre-processing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing

Overview

There is a broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data pre-processing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-the-art techniques that can boost the capabilities of many existing data mining tools.
The objective of this collection is to increase the awareness of the data mining community about research into feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of an endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches.
The book can be used by researchers and graduate students in machine learning, data mining, and knowledge discovery, who wish to understand techniques of feature extraction, construction and selection for data pre-processing and to solve large size, real-world problems. The book can also serve as a reference work for those who are conducting research into feature extraction, construction and selection, and are ready to meet the exciting challenges ahead of us.

Product Details

ISBN-13:
9780792381969
Publisher:
Springer US
Publication date:
07/01/1998
Series:
Springer International Series in Engineering and Computer Science, #453
Edition description:
1998
Pages:
410
Product dimensions:
9.21(w) x 6.14(h) x 1.00(d)

Table of Contents

Preface. Part I: Background and Foundation. 1. Less is More; Huan Liu, H. Motoda. 2. Feature Weighting for Lazy Learning Algorithms; D.W. Aha. 3. The Wrapper Approach; R. Kohavi, G.H. John. 4. Data-driven Constructive Induction: Methodology and Applications; E. Bloedorn, R.S. Michalski. Part II: Subset Selection. 5. Selecting Features by Vertical Compactness of Data; Ke Wang, S. Sundaresh. 6. Relevance Approach to Feature Subset Selection; Hui Wang, et al. 7. Novel Methods for Feature Subset Selection with Respect to Problem Knowledge; P. Pudil, J. Novovicová. 8. Feature Subset Selection Using a Genetic Algorithm; Jihoon Yang, V. Honavar. 9. A Relevancy Filter for Constructive Induction; N. Lavrac, et al. Part III: Feature Extraction. 10. Lexical Contextual Relations for the Unsupervised Discovery of Texts Features; P. Perrin, F. Petry. 11. Integrated Feature Extraction Using Adaptive Wavelets; Y. Mallet, et al. 12. Feature Extraction via Neural Networks; R. Setiono, Huan Liu. 13. Using Lattice-based Framework as a Tool for Feature Extraction; E. Mephu Nguifo, P. Njiwoua. 14. Constructive Function Approximation; P.E. Utgoff, D. Precup. Part IV: Feature Construction. 15. A Comparison of Constructing Different Types of New Feature for Decision Tree Learning; Zijian Zheng. 16. Constructive Induction: Covering Attribute Spectrum; Yuh-Jyh Hu. 17. Feature Construction Using Fragmentary Knowledge; S. Donoho, L. Rendell.18. Constructive Induction on Continuous Spaces; J. Gama, P. Brazdil. Part V: Combined Approaches. 19. Evolutionary Feature Space Transformation; H. Vafaie, K. De Jong. 20. Feature Transformation by Function Decomposition; B. Zupan, et al. 21. Constructive Induction of Cartesian Product Attributes; M.J. Pazzani. Part VI: Applications of Feature Transformation. 22. Towards Automatic Fractal Feature Extraction for Image Recognition; M. Baldoni, et al. 23. Feature Transformation Strategies for a Robot Learning Problem; L.S. Lopes, L.M. Camarinha-Matos. 24. Interactive Genetic Algorithm Based Feature Selection and Its Application to Marketing Data Analysis; T. Terano, Y. Ishino. Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >