Fermat's Last Theorem
This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo $p$ that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Neron models of their Jacobians, etc., are also explained in the text and in the appendices.
1116379528
Fermat's Last Theorem
This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo $p$ that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Neron models of their Jacobians, etc., are also explained in the text and in the appendices.
52.0 In Stock
Fermat's Last Theorem

Fermat's Last Theorem

by Takeshi Saito
Fermat's Last Theorem

Fermat's Last Theorem

by Takeshi Saito
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo $p$ that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Neron models of their Jacobians, etc., are also explained in the text and in the appendices.

Product Details

ISBN-13: 9780821898499
Publisher: American Mathematical Society
Publication date: 01/26/2015
Product dimensions: 5.60(w) x 8.40(h) x 0.50(d)
From the B&N Reads Blog

Customer Reviews