# Financial Derivatives in Theory and Practice / Edition 1

Paperback (Print)
\$62.54
(Save 17%)
Used and New from Other Sellers
Used and New from Other Sellers
from \$47.88
Usually ships in 1-2 business days
(Save 36%)
Other sellers (Paperback)
• All (11) from \$47.88
• New (6) from \$58.86
• Used (5) from \$47.88

### Overview

The term Financial Derivative is a very broad term which has come to mean any financial transaction whose value depends on the underlying value of the asset concerned. Sophisticated statistical modelling of derivatives enables practitioners in the banking industry to reduce financial risk and ultimately increase profits made from these transactions.

The book originally published in March 2000 to widespread acclaim. This revised edition has been updated with minor corrections and new references, and now includes a chapter of exercises and solutions, enabling use as a course text.

• Comprehensive introduction to the theory and practice of financial derivatives.
• Discusses and elaborates on the theory of interest rate derivatives, an area of increasing interest.
• Divided into two self-contained parts—the first concentrating on the theory of stochastic calculus, and the second describes in detail the pricing of a number of different derivatives in practice.
• Written by well respected academics with experience in the banking industry.

A valuable text for practitioners in research departments of all banking and finance sectors. Academic researchers and graduate students working in mathematical finance.

### Product Details

Preface to revised edition.

Preface.

Acknowledgements.

Part I: Theory.

1 Single-Period Option Pricing.

1.1 Option pricing in a nutshell.

1.2 The simplest setting.

1.3 General one-period economy.

1.4 A two-period example.

2 Brownian Motion.

2.1 Introduction.

2.2 Definition and existence.

2.3 Basic properties of Brownian motion.

2.4 Strong Markov property.

3 Martingales.

3.1 Definition and basic properties.

3.2 Classes of martingales.

3.3 Stopping times and the optional sampling theorem.

3.4 Variation, quadratic variation and integration.

3.5 Local martingales and semimartingales.

3.6 Supermartingales and the Doob—Meyer decomposition.

4 Stochastic Integration.

4.1 Outline.

4.2 Predictable processes.

4.3 Stochastic integrals: the L2 theory.

4.4 Properties of the stochastic integral.

4.5 Extensions via localization.

4.6 Stochastic calculus: Itô’s formula.

5 Girsanov and Martingale Representation.

5.1 Equivalent probability measures and the Radon—Nikodým derivative.

5.1.1 Basic results and properties.

5.2 Girsanov’s theorem.

5.3 Martingale representation theorem.

6 Stochastic Differential Equations.

6.1 Introduction.

6.2 Formal definition of an SDE.

6.3 An aside on the canonical set-up.

6.4 Weak and strong solutions.

6.5 Establishing existence and uniqueness: Itô theory.

6.6 Strong Markov property.

6.7 Martingale representation revisited.

7 Option Pricing in Continuous Time.

7.1 Asset price processes and trading strategies.

7.2 Pricing European options.

7.3 Continuous time theory.

7.4 Extensions.

8 Dynamic Term Structure Models.

8.1 Introduction.

8.2 An economy of pure discount bonds.

8.3 Modelling the term structure.

Part II: Practice.

9 Modelling in Practice.

9.1 Introduction.

9.2 The real world is not a martingale measure.

9.3 Product-based modelling.

9.4 Local versus global calibration.

10 Basic Instruments and Terminology.

10.1 Introduction.

10.2 Deposits.

10.3 Forward rate agreements.

10.4 Interest rate swaps.

10.5 Zero coupon bonds.

10.6 Discount factors and valuation.

11 Pricing Standard Market Derivatives.

11.1 Introduction.

11.2 Forward rate agreements and swaps.

11.3 Caps and floors.

11.4 Vanilla swaptions.

11.5 Digital options.

12 Futures Contracts.

12.1 Introduction.

12.2 Futures contract definition.

12.3 Characterizing the futures price process.

12.4 Recovering the futures price process.

12.5 Relationship between forwards and futures.

Orientation: Pricing Exotic European Derivatives.

13 Terminal Swap-Rate Models.

13.1 Introduction.

13.2 Terminal time modelling.

13.3 Example terminal swap-rate models.

13.4 Arbitrage-free property of terminal swap-rate models.

13.5 Zero coupon swaptions.

14 Convexity Corrections.

14.1 Introduction.

14.2 Valuation of ‘convexity-related’ products.

14.3 Examples and extensions.

15 Implied Interest Rate Pricing Models.

15.1 Introduction.

15.2 Implying the functional form DTS.

15.3 Numerical implementation.

15.4 Irregular swaptions.

15.5 Numerical comparison of exponential and implied swap-rate models.

16 Multi-Currency Terminal Swap-Rate Models.

16.1 Introduction.

16.2 Model construction.

16.3 Examples.

Orientation: Pricing Exotic American and Path-Dependent Derivatives.

17 Short-Rate Models.

17.1 Introduction.

17.2 Well-known short-rate models.

17.3 Parameter fitting within the Vasicek—Hull—White model.

17.4 Bermudan swaptions via Vasicek—Hull—White.

18 Market Models.

18.1 Introduction.

18.2 LIBOR market models.

18.3 Regular swap-market models.

18.4 Reverse swap-market models.

19 Markov-Functional Modelling.

19.1 Introduction.

19.2 Markov-functional models.

19.3 Fitting a one-dimensional Markov-functional model to swaption prices.

19.4 Example models.

19.5 Multidimensional Markov-functional models.

19.5.1 Log-normally driven Markov-functional models.

19.6 Relationship to market models.

19.7 Mean reversion, forward volatilities and correlation.

19.7.1 Mean reversion and correlation.

19.7.2 Mean reversion and forward volatilities.

19.7.3 Mean reversion within the Markov-functional LIBOR model.

19.8 Some numerical results.

20 Exercises and Solutions.

Appendix 1: The Usual Conditions.

Appendix 2: L2 Spaces.

Appendix 3: Gaussian Calculations.

References.

Index.

## Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

(0)

(0)

(0)

(0)

### 1 Star

(0)

Your Name: Create a Pen Name or

### Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

### Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

### What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

### Reviews should not contain any of the following:

• - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
• - Time-sensitive information such as tour dates, signings, lectures, etc.
• - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
• - Comments focusing on the author or that may ruin the ending for others
• - Phone numbers, addresses, URLs
• - Pricing and availability information or alternative ordering information

### Reminder:

• - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
• - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
Search for Products You'd Like to Recommend

### Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
• Anonymous

Posted February 23, 2000

#### Excellent Introduction to the Mathematics of Derivatives Pricing

This book explains the theory of valuing financial derivatives (with a focus on interest rate options) in a mathematically rigorous fashion. It is also one of the first books to use the recently developed concepts of martingales and numeraires consistently throughout the text. The book developes these mathematical concept rigorously and consistently. Therefore the book is most suited for people with a solid mathematical background looking for an extensive introduction to option pricing models.