Finite-Dimensional Division Algebras over Fields / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $30.16
Usually ships in 1-2 business days
(Save 76%)
Other sellers (Hardcover)
  • All (10) from $30.16   
  • New (7) from $30.16   
  • Used (3) from $40.00   


Finite-dimensional division algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensio= nal algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brau= er-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts;they arose first in the study of the so-called "multiplication algebras of Riemann matrices". The largest part of the book is the fifth chapter, dealing with involu= torial simple algebras of finite dimension over a field. Of particular interest are the Jordan algebras determined by these algebras with involution;their structure is discussed. Two important concepts of these algebras with involution are the universal enveloping algebras and the reduced norm.

Corrections of the 1st edition (1996) carried out on behalf of N. Jacobson (deceased) by Prof. P.M. Cohn (UC London, UK).

Read More Show Less

Editorial Reviews

From the Publisher
"...the author takes us on a tour of division algebras, pointing out the salient facts, often with little-known proofs, but never going on so long as to bore the reader. This makes the book a pleasure to read" Bulletin of the London Mathematical Society
Read More Show Less

Product Details

  • ISBN-13: 9783540570295
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 1/1/2010
  • Edition description: 1st ed. 1996. Corr. 2nd printing 2009
  • Edition number: 1
  • Pages: 286
  • Product dimensions: 9.21 (w) x 6.14 (h) x 0.69 (d)

Table of Contents

Skew Polynomials and Division Algebras.- Brauer Factor Sets and Noether Factor Sets.- Galois Descent and Generic Splitting Fields.- p-Algebras.- Simple Algebras with Involution.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)