Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications / Edition 1

Paperback (Print)

Overview

Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book.

Sponsored by:
IEEE Antennas and Propagation Society.

"...covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics...with worked-out examples to aid the reader with the techniques."

Read More Show Less

Product Details

Meet the Author

About the Authors John L. Volakis is professor at the Department of Electrical Engineering and Computer Science at the University of Michigan. He has published more than 140 refereed journal articles and more than 140 conference papers on numerical and analytical techniques in electromagnetics. Dr. Volakis is also coauthor of Approximate Boundary Conditions in Electromagnetics (IEE Press, 1995) and several book chapters.
Arindam Chaterjee has developed three-dimensional computer simulation of electromagnetic fields for scattering and microwave circuits, and is currently a member of the finite element development group for the HFSS finite element commercial package at Hewlett-Packard.
Leo C. Kempel developed three-dimensional antenna simulation packages using the finite element-boundary integral method and has extensive experience with all popular numerical techniques in electromagnetics. He is currently at Mission Research Corporation, Florida, conducting research and development on all aspects of electromagnetics.

Read More Show Less

Table of Contents

Preface.

Acknowledgments.

Fundamental Concepts.

Shape Functions for Scalar and Vector Finite Elements.

Overview of the Finite Element Method: One-Dimensional Examples.

Two-Dimensional Applications.

Three-Dimensional Problems: Closed Domain.

Three-Dimensional Problems: Radiation and Scattering.

Three-Dimensional FE-BI Method.

Fast Integral Methods (S. Bindiganavale and J.L. Volakis).

Numerical Issues.

Index.

About the Authors.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)