A First Course in Differential Equations with Modeling Applications / Edition 10

A First Course in Differential Equations with Modeling Applications / Edition 10

by Dennis G. Zill
     
 

ISBN-10: 1111827052

ISBN-13: 9781111827052

Pub. Date: 03/15/2012

Publisher: Cengage Learning


A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible book speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples,…  See more details below

Overview


A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible book speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides a thorough treatment of boundary-value problems and partial differential equations.

Product Details

ISBN-13:
9781111827052
Publisher:
Cengage Learning
Publication date:
03/15/2012
Edition description:
New Edition
Pages:
480
Sales rank:
87,288
Product dimensions:
8.40(w) x 11.00(h) x 0.90(d)

Table of Contents


1. INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminology. Initial-Value Problems. Differential Equations as Mathematical Models. Chapter 1 in Review. 2. FIRST-ORDER DIFFERENTIAL EQUATIONS. Solution Curves Without a Solution. Separable Variables. Linear Equations. Exact Equations and Integrating Factors. Solutions by Substitutions. A Numerical Method. Chapter 2 in Review. 3. MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS. Linear Models. Nonlinear Models. Modeling with Systems of First-Order Differential Equations. Chapter 3 in Review. 4. HIGHER-ORDER DIFFERENTIAL EQUATIONS. Preliminary Theory-Linear Equations. Reduction of Order. Homogeneous Linear Equations with Constant Coefficients. Undetermined Coefficients-Superposition Approach. Undetermined Coefficients-Annihilator Approach. Variation of Parameters. Cauchy-Euler Equation. Solving Systems of Linear Differential Equations by Elimination. Nonlinear Differential Equations. Chapter 4 in Review. 5. MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS. Linear Models: Initial-Value Problems. Linear Models: Boundary-Value Problems. Nonlinear Models. Chapter 5 in Review. 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Review of Power Series Solutions About Ordinary Points. Solutions About Singular Points. Special Functions. Chapter 6 in Review. 7. LAPLACE TRANSFORM. Definition of the Laplace Transform. Inverse Transform and Transforms of Derivatives. Operational Properties I. Operational Properties II. Dirac Delta Function. Systems of Linear Differential Equations. Chapter 7 in Review. 8. SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS. Preliminary Theory. Homogeneous Linear Systems. Nonhomogeneous Linear Systems. Matrix Exponential. Chapter 8 in Review. 9. NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS. Euler Methods. Runge-Kutta Methods. Multistep Methods. Higher-Order Equations and Systems. Second-Order Boundary-Value Problems. Chapter 9 in Review. Appendix I: Gamma Function. Appendix II: Matrices. Appendix III: Laplace Transforms. Answers for Selected Odd-Numbered Problems.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >