Foundations of Computational Intelligence: Volume 4: Bio-Inspired Data Mining / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $19.56
Usually ships in 1-2 business days
(Save 90%)
Other sellers (Hardcover)
  • All (11) from $19.56   
  • New (6) from $149.91   
  • Used (5) from $19.56   


Recent advances in the computing and electronics technology, particularly in sensor devices, databases and distributed systems, are leading to an exponential growth in the amount of data stored in databases. It has been estimated that this amount doubles every 20 years. For some applications, this increase is even steeper. Databases storing DNA sequence, for example, are doubling their size every 10 months. This growth is occurring in several applications areas besides bioinformatics, like financial transactions, government data, environmental monitoring, satellite and medical images, security data and web. As large organizations recognize the high value of data stored in their databases and the importance of their data collection to support decision-making, there is a clear demand for sophisticated Data Mining tools. Data mining tools play a key role in the extraction of useful knowledge from databases. They can be used either to confirm a particular hypothesis or to automatically find patterns. In the second case, which is related to this book, the goal may be either to describe the main patterns present in dataset, what is known as descriptive Data Mining or to find patterns able to predict behaviour of specific attributes or features, known as predictive Data Mining. While the first goal is associated with tasks like clustering, summarization and association, the second is found in classification and regression problems.

Computational tools or solutions based on intelligent systems are being used with great success in Data Mining applications. Nature has been very successful in providing clever and efficient solutions to different sorts of challenges and problems posed to organisms by ever-changing and unpredictable environments. It is easy to observe that strong scientific advances have been made when issues from different research areas are integrated. A particularly fertile integration combines biology and computing. Computational tools inspired on biological process can be found in a large number of applications. One of these applications is Data Mining, where computing techniques inspired on nervous systems; swarms, genetics, natural selection, immune systems and molecular biology have provided new efficient alternatives to obtain new, valid, meaningful and useful patterns in large datasets.

This Volume comprises of 16 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of Bio-inspired techniques for Data Mining.

Read More Show Less

Product Details

  • ISBN-13: 9783642010873
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 4/15/2009
  • Series: Studies in Computational Intelligence Series, #204
  • Edition description: 2009
  • Edition number: 1
  • Pages: 396
  • Product dimensions: 6.40 (w) x 9.30 (h) x 1.10 (d)

Table of Contents

Part-I: Bio-inspired approaches in sequence and data streams .- Adaptive and Self-adaptive Techniques for Evolutionary Forecasting Applications Set in Dynamic and Uncertain Environments .- Sequence Pattern Mining: Genetic Network Programming Approach.- Growing Self-Organizing Map for Online Continuous Clustering.- Synthesis of Spatio-Temporal Models by the Evolution of Non-Uniform Cellular Automata.- Part-II Bio-inspired approaches in classification problem.- Genetic Selection Algorithm and Cloning for Data Mining with GMDH Method .- Inducing Relational Fuzzy Classification Rules by means of Cooperative Coevolution.- Post-processing Evolved Decision Trees .- Part-III: Evolutionary Fuzzy and Swarm in Clustering Problems.- Evolutionary Fuzzy Clustering: An Overview and Efficiency Issues.- Stability-based Model Order Selection for Clustering Using Multiple Cooperative Swarms .- Data-mining protein structure by clustering, segmentation and evolutionary algorithms .- A clustering genetic algorithm for genomic data mining.- Detection of Remote Protein Homologs using Social Programming.- Part-V: Bio-inspired approaches in information retrieval and visualization.- Optimizing Information Retrieval Using Evolutionary Algorithms and Fuzzy Inference System .- Web data clustering .- Efficient Construction of Image Feature Extraction Programs by Using Linear Genetic Programming with Fitness Retrieval and Intermediate-result Caching.- Mining Network Traffic Data for Attacks through MOVICAB-IDS.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)