Foundations of Data Visualization
This is the first book that focuses entirely on the fundamental questions in visualization. Unlike other existing books in the field, it contains discussions that go far beyond individual visual representations and individual visualization algorithms. It offers a collection of investigative discourses that probe these questions from different perspectives, including concepts that help frame these questions and their potential answers, mathematical methods that underpin the scientific reasoning of these questions, empirical methods that facilitate the validation and falsification of potential answers, and case studies that stimulate hypotheses about potential answers while providing practical evidence for such hypotheses. Readers are not instructed to follow a specific theory, but their attention is brought to a broad range of schools of thoughts and different ways of investigating fundamental questions. As such, the book represents the by now most significant collective effort for gathering a large collection of discourses on the foundation of data visualization.

Data visualization is a relatively young scientific discipline. Over the last three decades, a large collection of computer-supported visualization techniques have been developed, and the merits and benefits of using these techniques have been evidenced by numerous applications in practice. These technical advancements have given rise to the scientific curiosity about some fundamental questions such as why and how visualization works, when it is useful or effective and when it is not, what are the primary factors affecting its usefulness and effectiveness, and so on. This book signifies timely and exciting opportunities to answer such fundamental questions by building on the wealth of knowledge and experience accumulated in developing and deploying visualization technology in practice.


1134296829
Foundations of Data Visualization
This is the first book that focuses entirely on the fundamental questions in visualization. Unlike other existing books in the field, it contains discussions that go far beyond individual visual representations and individual visualization algorithms. It offers a collection of investigative discourses that probe these questions from different perspectives, including concepts that help frame these questions and their potential answers, mathematical methods that underpin the scientific reasoning of these questions, empirical methods that facilitate the validation and falsification of potential answers, and case studies that stimulate hypotheses about potential answers while providing practical evidence for such hypotheses. Readers are not instructed to follow a specific theory, but their attention is brought to a broad range of schools of thoughts and different ways of investigating fundamental questions. As such, the book represents the by now most significant collective effort for gathering a large collection of discourses on the foundation of data visualization.

Data visualization is a relatively young scientific discipline. Over the last three decades, a large collection of computer-supported visualization techniques have been developed, and the merits and benefits of using these techniques have been evidenced by numerous applications in practice. These technical advancements have given rise to the scientific curiosity about some fundamental questions such as why and how visualization works, when it is useful or effective and when it is not, what are the primary factors affecting its usefulness and effectiveness, and so on. This book signifies timely and exciting opportunities to answer such fundamental questions by building on the wealth of knowledge and experience accumulated in developing and deploying visualization technology in practice.


189.0 In Stock

eBook1st ed. 2020 (1st ed. 2020)

$189.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This is the first book that focuses entirely on the fundamental questions in visualization. Unlike other existing books in the field, it contains discussions that go far beyond individual visual representations and individual visualization algorithms. It offers a collection of investigative discourses that probe these questions from different perspectives, including concepts that help frame these questions and their potential answers, mathematical methods that underpin the scientific reasoning of these questions, empirical methods that facilitate the validation and falsification of potential answers, and case studies that stimulate hypotheses about potential answers while providing practical evidence for such hypotheses. Readers are not instructed to follow a specific theory, but their attention is brought to a broad range of schools of thoughts and different ways of investigating fundamental questions. As such, the book represents the by now most significant collective effort for gathering a large collection of discourses on the foundation of data visualization.

Data visualization is a relatively young scientific discipline. Over the last three decades, a large collection of computer-supported visualization techniques have been developed, and the merits and benefits of using these techniques have been evidenced by numerous applications in practice. These technical advancements have given rise to the scientific curiosity about some fundamental questions such as why and how visualization works, when it is useful or effective and when it is not, what are the primary factors affecting its usefulness and effectiveness, and so on. This book signifies timely and exciting opportunities to answer such fundamental questions by building on the wealth of knowledge and experience accumulated in developing and deploying visualization technology in practice.



Product Details

ISBN-13: 9783030344443
Publisher: Springer-Verlag New York, LLC
Publication date: 08/11/2020
Sold by: Barnes & Noble
Format: eBook
File size: 87 MB
Note: This product may take a few minutes to download.

About the Author

Helwig Hauser has been a professor at the University of Bergen, Norway, since 2007,where he leads the research group on visualization [5]. During the first four years, the group grew to a size of 15 researchers, working on projects in medical visualization, the visualization of geological data and models, flow visualization, the visualization of biological data, marine data visualization, and others. Since then, the group is continuously contributing to the field (see, for example, the publications of the Bergen VisGroup).

Table of Contents

Part I: Theoretical Underpinnings of Data Visualization.- The Fabric of Visualization.- Visual Abstraction.- Measures in Visualization Space.- Knowledge-Assisted Visualization and Guidance.- Mathematical Foundations in Visualizations.- Transformations, Mappings and Data Summaries.- Part II: Empirical Studies in Visualization.- A Survey of Variables Used in Empirical Studies for Visualization.- Empirical Evaluations with Domain Experts.- Evaluation of Visualization Systems with Long-term Case Studies.- Vis4Vis: Visualization for (Empirical) Visualization Research.- 'Isms' in Visualization.- Open Challenges in Empirical Visualization Research.- Part III: Collaboration with Domain Experts.- Case Studies for Working with Domain Experts.- Collaboration Between Industry and University.- Collaborating Successfully with Domain Experts.- Part IV: Developing Visualizations for Broad Audiences.- Reflections on Visualization for Broad Audiences.- Reaching Broad Audiences from a Research InstituteSetting.- Reaching Broad Audiences from a Large Agency Setting.-  Reaching Broad Audiences from a Science Center or Museum Setting.-  Reaching Broad Audiences in an Educational Setting.- Challenges and Open Issues in Visualization for Broad Audiences
From the B&N Reads Blog

Customer Reviews