Foundations of Rule Learning

Overview

Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic ...

See more details below
Hardcover (2012)
$71.02
BN.com price
(Save 11%)$79.95 List Price
Other sellers (Hardcover)
  • All (13) from $58.25   
  • New (8) from $64.59   
  • Used (5) from $58.25   
Sending request ...

Overview

Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.

The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

“The book presents a comprehensive overview of modern rule learning techniques, providing an introduction to rule learning in machine learning and data mining. … This complex approach is intended for researchers and developers in the fields of rule learning.” (Smaranda Belciug, Zentralblatt MATH, Vol. 1263, 2013)

"Rule learning is one of the core technologies in machine learning, but there is a good reason why nobody has previously had the audacity to write a book on it. The topic is large and complicated. There are a great variety of quite different machine learning activities that all use rules, in different ways, for different purposes. ... [This book] provides a clear overview of the field. One secret to its success lies in the development of a clear unifying terminology that is powerful enough to cover the whole field. ... For the first time we have a consolidated detailed summary of the state of the art in rule learning. This book provides an excellent introduction to the field for the uninitiated, and is likely to lift the horizons of many ... [It] makes the full extent of this toolkit widely accessible to both the novice and the initiate, and clearly maps the research landscape, from the field’s foundations in the 1970s through to the many diverse frontiers of current research." Geoffrey I. Webb (Monash University)

Read More Show Less

Product Details

  • ISBN-13: 9783540751960
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 11/30/2012
  • Series: Cognitive Technologies Series
  • Edition description: 2012
  • Edition number: 1
  • Pages: 336
  • Product dimensions: 6.14 (w) x 9.21 (h) x 0.81 (d)

Meet the Author

Prof. Dr. Johannes Fürnkranz is a professor of knowledge engineering at the Technische Universität Darmstadt. He has chaired and served on the boards of the main journals and conferences in this field. His research interests include inductive rule learning, preference learning, game playing, web mining, and data mining in social science.

Dr. Dragan Gamberger heads the Laboratory for Information Systems at the Rudjer Bošković Institute in Zagreb. He has chaired the main related conference ECML/PKDD, and is a coauthor of the publicly available Data Mining Server. His research interests include data mining and the medical applications of descriptive rule induction.

Prof. Dr. Nada Lavrač heads the Department of Knowledge Technologies at the Jožef Stefan Institute in Ljubljana. She is the author and editor of several books and proceedings in the field of data mining and machine learning, and she has chaired or served on the boards of the main related journals and conferences. Her research interests include machine learning, data mining, and inductive logic programming, and related applications in medicine, public health, bioinformatics, and the management of virtual enterprises. In 1997 she was awarded the Ambassador of Science of Slovenia prize, and in 2007 she was elected as an ECCAI Fellow.

Read More Show Less

Table of Contents

Part I. Introduction to Rule Learning.- Machine Learning and Data Mining.- Propositional Rule Learning.- Relational Rule Learning.- Part II. Elements of Rule Learning.- Formal Framework for Rule Analysis.- Features.- Heuristics.- Pruning of Rules and Rule Sets.- Survey of Classification Rule Learning Systems Through the Analysis of Rule Learning Elements Used.- Part III. Selected Topics in Predictive Induction.- Part IV Selected Techniques and Applications.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)