Fractal Functions, Fractal Surfaces, and Wavelets
Fractal Functions, Fractal Surfaces, and Wavelets, Second Edition, is the first systematic exposition of the theory of local iterated function systems, local fractal functions and fractal surfaces, and their connections to wavelets and wavelet sets. The book is based on Massopust's work on and contributions to the theory of fractal interpolation, and the author uses a number of tools—including analysis, topology, algebra, and probability theory—to introduce readers to this exciting subject. Though much of the material presented in this book is relatively current (developed in the past decades by the author and his colleagues) and fairly specialized, an informative background is provided for those entering the field. With its coherent and comprehensive presentation of the theory of univariate and multivariate fractal interpolation, this book will appeal to mathematicians as well as to applied scientists in the fields of physics, engineering, biomathematics, and computer science. In this second edition, Massopust includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, further develops the connections to wavelets and wavelet sets, and deepens and extends the pedagogical content. - Offers a comprehensive presentation of fractal functions and fractal surfaces - Includes latest developments in fractal interpolation - Connects fractal geometry with wavelet theory - Includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, and further develops the connections to wavelets and wavelet sets - Deepens and extends the pedagogical content
1132569923
Fractal Functions, Fractal Surfaces, and Wavelets
Fractal Functions, Fractal Surfaces, and Wavelets, Second Edition, is the first systematic exposition of the theory of local iterated function systems, local fractal functions and fractal surfaces, and their connections to wavelets and wavelet sets. The book is based on Massopust's work on and contributions to the theory of fractal interpolation, and the author uses a number of tools—including analysis, topology, algebra, and probability theory—to introduce readers to this exciting subject. Though much of the material presented in this book is relatively current (developed in the past decades by the author and his colleagues) and fairly specialized, an informative background is provided for those entering the field. With its coherent and comprehensive presentation of the theory of univariate and multivariate fractal interpolation, this book will appeal to mathematicians as well as to applied scientists in the fields of physics, engineering, biomathematics, and computer science. In this second edition, Massopust includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, further develops the connections to wavelets and wavelet sets, and deepens and extends the pedagogical content. - Offers a comprehensive presentation of fractal functions and fractal surfaces - Includes latest developments in fractal interpolation - Connects fractal geometry with wavelet theory - Includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, and further develops the connections to wavelets and wavelet sets - Deepens and extends the pedagogical content
99.95 In Stock
Fractal Functions, Fractal Surfaces, and Wavelets

Fractal Functions, Fractal Surfaces, and Wavelets

by Peter R. Massopust
Fractal Functions, Fractal Surfaces, and Wavelets

Fractal Functions, Fractal Surfaces, and Wavelets

by Peter R. Massopust

eBook

$99.95 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Fractal Functions, Fractal Surfaces, and Wavelets, Second Edition, is the first systematic exposition of the theory of local iterated function systems, local fractal functions and fractal surfaces, and their connections to wavelets and wavelet sets. The book is based on Massopust's work on and contributions to the theory of fractal interpolation, and the author uses a number of tools—including analysis, topology, algebra, and probability theory—to introduce readers to this exciting subject. Though much of the material presented in this book is relatively current (developed in the past decades by the author and his colleagues) and fairly specialized, an informative background is provided for those entering the field. With its coherent and comprehensive presentation of the theory of univariate and multivariate fractal interpolation, this book will appeal to mathematicians as well as to applied scientists in the fields of physics, engineering, biomathematics, and computer science. In this second edition, Massopust includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, further develops the connections to wavelets and wavelet sets, and deepens and extends the pedagogical content. - Offers a comprehensive presentation of fractal functions and fractal surfaces - Includes latest developments in fractal interpolation - Connects fractal geometry with wavelet theory - Includes pertinent application examples, further discusses local IFS and new fractal interpolation or fractal data, and further develops the connections to wavelets and wavelet sets - Deepens and extends the pedagogical content

Product Details

ISBN-13: 9780128044704
Publisher: Elsevier Science & Technology Books
Publication date: 09/02/2016
Sold by: Barnes & Noble
Format: eBook
Pages: 426
File size: 17 MB
Note: This product may take a few minutes to download.

About the Author

Peter R. Massopust is a Privatdozent in the Center of Mathematics at the Technical University of Munich, Germany. He received his Ph.D. in Mathematics from the Georgia Institute of Technology in Atlanta, Georgia, USA, and his habilitation from the Technical University of Munich. He worked at several universities in the United States, at the Sandia National Laboratories in Albuquerque (USA), and as a senior research scientist in industry before returning to the academic environment. He has written more than sixty peer-reviewed articles in the mathematical areas of Fourier Analysis, Approximation Theory, Fractals, Splines, and Harmonic Analysis and more than 20 technical reports while working in the non-academic environment. He has authored or coauthored two textbooks and two monographs, and coedited two Contemporary Mathematics Volumes and several Special Issues for peer-reviewed journals. He is on the editorial board of several mathematics journals and has given more than one hundred invited presentations at national and international conferences, workshops, and seminars.

Table of Contents

Part I: Foundations1. Mathematical preliminaries2. Construction of fractal sets3. Dimension theory4. Dynamical systems and dimension Part II: Fractal Functions and Fractal Surfaces5. Construction of fractal functions6. Fractels and self-referential functions7. Dimension of fractal functions8. Fractal functions and wavelets9. Fractal surfaces10. Fractal surfaces and wavelets in ℝn

What People are Saying About This

From the Publisher

This updated and expanded second edition is the first systematic exposition of the theory of local iterated function systems, local fractal functions and fractal surfaces, and their connections to wavelets and wavelet sets

From the B&N Reads Blog

Customer Reviews