Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $18.00
Usually ships in 1-2 business days
(Save 79%)
Other sellers (Hardcover)
  • All (8) from $18.00   
  • New (4) from $35.19   
  • Used (4) from $18.00   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$35.19
Seller since 2008

Feedback rating:

(169)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
0387332855 BRAND NEW NEVER USED IN STOCK 125,000+ HAPPY CUSTOMERS SHIP EVERY DAY WITH FREE TRACKING NUMBER

Ships from: fallbrook, CA

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$56.56
Seller since 2010

Feedback rating:

(53)

Condition: New
"New, ships through UPS and DHL. Excellent customer service. Satisfaction guaranteed!! "

Ships from: STERLING HEIGHTS, MI

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$71.56
Seller since 2014

Feedback rating:

(0)

Condition: New
Hardcover New in new dust jacket. Brand New US edition, 3-5 days shipping!

Ships from: foxboro, MA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$80.00
Seller since 2014

Feedback rating:

(149)

Condition: New
Brand new.

Ships from: acton, MA

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings; that is, one-dimensional drums with fractal boundary. This second edition of Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, complex analysis, distribution theory, and mathematical physics. The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level.

Key Features include:

· The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings

· Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

Key Features include:

· The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings

· Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

Key Features include:

· The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings

· Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

Key Features include:

· The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings

· Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

· Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal

· Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula

· The method of Diophantine approximation is used to study self-similar strings and flows

· Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions

The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field.

Review of the First Edition:

" The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications."

—Nicolae-Adrian Secelean, Zentralblatt

Read More Show Less

Editorial Reviews

From the Publisher
Review of the First Edition:
"In this book the author encompasses a broad range of topics that connect many areas of mathematics, including fractal geometry, number theory, spectral geometry, dynamical systems, complex analysis, distribution theory and mathematical physics. The book is self containing, the material organized in chapters preceding by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actual and has many applications." — Nicolae-Adrian Secelean for Zentralblatt MATH
"This highly original self-contained book will appeal to geometers, fractalists, mathematical physicists and number theorists, as well as to graduate students in these fields and others interested in gaining insight into these rich areas either for its own sake or with a view to applications. They will find it a stimulating guide, well written in a clear and pleasant style." — Mathematical Reviews (Review of previous book by authors)
"It is the reviewera (TM)s opinion that the authors have succeeded in showing that the complex dimensions provide a very natural and unifying mathematical framework for investigating the oscillations in the geometry and the spectrum of a fractal string. The book is well written. The exposition is self-contained, intelligent and well paced." — Bulletin of the London Mathematical Society (Review of previous book by authors)
"The new approach and results on the important problems illuminated in this work will appeal to researchers and graduate students in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics." —Simulation News Europe (Review of previous book by authors)
Read More Show Less

Product Details

  • ISBN-13: 9780387332857
  • Publisher: Springer-Verlag New York, LLC
  • Publication date: 8/10/2006
  • Series: Springer Monographs in Mathematics Series
  • Edition number: 1
  • Pages: 488
  • Product dimensions: 1.06 (w) x 9.21 (h) x 6.14 (d)

Table of Contents

List of Figures.- Preface.- Overview.- Introduction.- Complex Dimensions of Ordinary Fractal Strings.- Complex Dimensions of Self-Similar Fractal Strings.- Complex Dimensions of Nonlattice Self-Similar Strings: Quasiperiodic Patterns and Diophantine Approximation.- Generalized Fractal Strings Viewed as Measures.- Explicit Formulas for Generalized Fractal Strings.- The Geometry and the Spectrum of Fractal Strings.- Periodic Orbits of Self-Similar Flows.- Tubular Neighborhoods and Minkowski Measurability.- The Riemann Hypothesis and Inverse Spectral Problems.- Generalized Cantor Strings and their Oscillations.- The Critical Zeros of Zeta Functions.- Concluding Comments, Open Problems, and Perspectives.- Appendices.- A. Zeta Functions in Number Theory.- B. Zeta Functions of Laplacians and Spectral Asymptotics.- C. An Application of Nevanlinna Theory.- Bibliography.- Acknolwedgements.- Conventions.- Index of Symbols.- Author Index.- Subject Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)