The new edition features:
- Increased coverage of whole-genome sequencing technologies and enhanced treatment of bioinformatics.
- Clear, two-colour diagrams throughout.
- A dedicated website including all figures.
Noted for its outstanding balance between clarity of coverage and level of detail, this book provides an excellent introduction to the fast moving world of molecular genetics.
The new edition features:
- Increased coverage of whole-genome sequencing technologies and enhanced treatment of bioinformatics.
- Clear, two-colour diagrams throughout.
- A dedicated website including all figures.
Noted for its outstanding balance between clarity of coverage and level of detail, this book provides an excellent introduction to the fast moving world of molecular genetics.

From Genes to Genomes: Concepts and Applications of DNA Technology
400
From Genes to Genomes: Concepts and Applications of DNA Technology
400Paperback(3rd ed.)
-
SHIP THIS ITEMTemporarily Out of Stock Online
-
PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Related collections and offers
Overview
The new edition features:
- Increased coverage of whole-genome sequencing technologies and enhanced treatment of bioinformatics.
- Clear, two-colour diagrams throughout.
- A dedicated website including all figures.
Noted for its outstanding balance between clarity of coverage and level of detail, this book provides an excellent introduction to the fast moving world of molecular genetics.
Product Details
ISBN-13: | 9780470683859 |
---|---|
Publisher: | Wiley |
Publication date: | 12/12/2011 |
Edition description: | 3rd ed. |
Pages: | 400 |
Product dimensions: | 6.60(w) x 9.50(h) x 0.80(d) |
About the Author
Malcolm von Schantz is Professor of Chronobiology at the University of Surrey. He is an internationally recognised researcher and an experienced educator, who received his training in Sweden, the United States, and the UK.
Nicholas Plant is the author of From Genes to Genomes: Concepts and Applications of DNA Technology, 3rd Edition, published by Wiley.
Read an Excerpt
From Genes to Genomes
Concepts and Applications of DNA TechnologyBy Jeremy W. Dale Malcolm von Schantz
John Wiley & Sons
ISBN: 0-471-49782-7Chapter One
IntroductionThis book is about the study and manipulation of nucleic acids, and how this can be used to answer biological questions. Although we hear a lot about the commercial applications, in particular (at the moment) the genetic modification of plants, the real revolution lies in the incredible advances in our understanding of how cells work. Until about 30 years ago, genetics was a patient and laborious process of selecting variants (whether of viruses, bacteria, plants or animals), and designing breeding experiments that would provide data on how the genes concerned were inherited. The study of human genetics proceeded even more slowly, because of course you could only study the consequences of what happened naturally. Then, in the 1970s, techniques were discovered that enabled us to cut DNA precisely into specific fragments, and join them together again in different combinations. For the first time it was possible to isolate and study specific genes. Since this applied equally to human genes, the impact on human genetics was particularly marked. In parallel with this, hybridization techniques were developed that enabled the identification of specific DNA sequences, and (somewhat later) methods were introduced for determining the sequence of these bits of DNA. Combining thoseadvances with automated techniques and the concurrent advance in computer power has led to the determination of the full sequence of the human genome.
This revolution does not end with understanding how genes work and how the information is inherited. Genetics, and especially modern molecular genetics, underpins all the biological sciences. By studying, and manipulating, specific genes, we develop our understanding of the way in which the products of those genes interact to give rise to the properties of the organism itself. This could range from, for example, the mechanism of motility in bacteria to the causes of human genetic diseases and the processes that cause a cell to grow uncontrollably giving rise to a tumour. In many cases, we can identify precisely the cause of a specific property. We can say that a change in one single base in the genome of a bacterium will make it resistant to a certain antibiotic, or that a change in one base in human DNA could cause debilitating disease. This only scratches the surface of the power of these techniques, and indeed this book can only provide an introduction to them. Nevertheless, we hope that by the time you have studied it, you will have some appreciation of what can be (and indeed has been) achieved.
Genetic manipulation is traditionally divided into in vitro and in vivo work. Traditionally, investigators will first work in vitro, using enzymes derived from various organisms to create a recombinant DNA molecule in which the DNA they want to study is joined to a vector. This recombinant vector molecule is then processed in vivo inside a host organism, more often than not a strain of the Escherichia coli (E. coli) bacterium. A clone of the host carrying the foreign DNA is grown, producing a great many identical copies of the DNA, and sometimes its products as well. Today, in many cases the in vivo stage is bypassed altogether by the use of PCR (polymerase chain reaction), a method which allows us to produce many copies of our DNA in vitro without the help of a host organism.
In the early days, E. coli strains carrying recombinant DNA molecules were treated with extreme caution. E. coli is a bacterium which lives in its billions within our digestive system, and those of other mammals, and which will survive quite easily in our environment, for instance in our food and on our beaches. So there was a lot of concern that the introduction of foreign DNA into E. coli would generate bacteria with dangerous properties. Fortunately, this is one fear that has been shown to be unfounded. Some natural E. coli strains are pathogenic - in particular the O157:H7 strain which can cause severe disease or death. By contrast, the strains used for genetic manipulation are harmless disabled laboratory strains that will not even survive in the gut. Working with genetically modified E. coli can therefore be done very safely (although work with any bacterium has to follow some basic safety rules). However, the most commonly used type of vector, plasmids, are shared readily between bacteria; the transmission of plasmids between bacteria is behind much of the natural spread of antibiotic resistance. What if our recombinant plasmids were transmitted to other bacterial strains that do survive on their own? This, too, has turned out not to be a worry in the majority of cases. The plasmids themselves have been manipulated so that they cannot be readily transferred to other bacteria. Furthermore, carrying a gene such as that coding for, say, dogfish insulin, or an artificial chromosome carrying 100 000 bases of human genomic DNA is a great burden to an E. coli cell, and carries no reward whatsoever. In fact, in order to make them accept it, we have to create conditions that will kill all bacterial cells not carrying the foreign gene. If you fail to do so when you start your culture in the evening, you can be sure that your bacteria will have dropped the foreign gene the next morning. Evolution in progress!
Whilst nobody today worries about genetically modified E. coli, and indeed diabetics have been injecting genetically modified insulin produced by E. coli for decades, the issue of genetic engineering is back on the public agenda, this time pertaining to higher organisms. It is important to distinguish the genetic modification of plants and animals from cloning plants and animals. The latter simply involves the production of genetically identical individuals; it does not involve any genetic modification whatsoever. (The two technologies can be used in tandem, but that is another matter.) So, we will ignore the cloning of higher organisms here. Although it is conceptually very similar to producing a clone of a genetically modified E. coli, it is really a matter of reproductive cell biology, and frankly relatively uninteresting from the molecular point of view. By contrast, the genetic modification of higher organisms is both conceptually similar to the genetic modification of bacteria, and also very pertinent as it is a potential and, in principle, fairly easy application following the isolation and analysis of a gene.
At the time of writing, the ethical and environmental consequences of this application are still a matter of vivid debate and media attention, and it would be very surprising if this is not still continuing by the time you read this. Just as in the laboratory, the genetic modification as such is not necessarily the biggest risk here. Thus, if a food crop carries a gene that makes it tolerant of herbicides (weedkillers), it would seem reasonable to worry more about increased levels of herbicides in our food than about the genetic modification itself. Equally, the worry about such an organism escaping into the wild may turn out to be exaggerated. Just as, without an evolutionary pressure to keep the genetic modification, our E. coli in the example above died out overnight, it appears quite unlikely that a plant that wastes valuable resources on producing a protein that protects it against herbicides will survive long in the wild in the absence of herbicide use.
Nonetheless, this issue is by no means as clear-cut as that of genetically modified bacteria. We cannot test these organisms in a contained laboratory. They take months or a year to produce each generation, not 20 minutes as E. coli does. And even if they should be harmless in themselves, there are other issues as well, such as the one exemplified above. Thus, this is an important and complicated issue, and to understand it fully you need to know about evolution, ecology, food chemistry, nutrition, and molecular biology. We hope that reading this book will be of some help for the last of these. We also hope that it will convey some of the wonder, excitement, and intellectual stimulation that this science brings to its practitioners. What better way to reverse the boredom of a long journey than to indulge in the immense satisfaction of constructing a clever new screening algorithm? Who needs jigsaw and crossword puzzles when you can figure out a clever way of joining two DNA fragments together? And how can you ever lose the fascination you feel about the fact that the drop of enzyme that you're adding to your test tube is about to manipulate the DNA molecules in it with surgical precision?
(Continues...)
Excerpted from From Genes to Genomes by Jeremy W. Dale Malcolm von Schantz Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.
Table of Contents
Preface xiii1 From Genes to Genomes 1
1.1 Introduction 1
1.2 Basic molecular biology 4
1.2.1 The DNA backbone 4
1.2.2 The base pairs 6
1.2.3 RNA structure 10
1.2.4 Nucleic acid synthesis 11
1.2.5 Coiling and supercoilin 11
1.3 What is a gene? 13
1.4 Information flow: gene expression 15
1.4.1 Transcription 16
1.4.2 Translation 19
1.5 Gene structure and organisation 20
1.5.1 Operons 20
1.5.2 Exons and introns 21
1.6 Refinements of the model 22
2 How to Clone a Gene 25
2.1 What is cloning? 25
2.2 Overview of the procedures 26
2.3 Extraction and purification of nucleic acids 29
2.3.1 Breaking up cells and tissues 29
2.3.2 Alkaline denaturation 31
2.3.3 Column purification 31
2.4 Detection and quantitation of nucleic acids 32
2.5 Gel electrophoresis 33
2.5.1 Analytical gel electrophoresis 33
2.5.2 Preparative gel electrophoresis 36
2.6 Restriction endonucleases 36
2.6.1 Specificity 37
2.6.2 Sticky and blunt ends 40
2.7 Ligation 42
2.7.1 Optimising ligation conditions 44
2.7.2 Preventing unwanted ligation: alkaline phosphatase and double digests 46
2.7.3 Other ways of joining DNA fragments 48
2.8 Modification of restriction fragment ends 49
2.8.1 Linkers and adaptors 50
2.8.2 Homopolymer tailing 52
2.9 Plasmid vectors 53
2.9.1 Plasmid replication 54
2.9.2 Cloning sites 55
2.9.3 Selectable markers 57
2.9.4 Insertional inactivation 58
2.9.5 Transformation 59
2.10 Vectors based on the lambda bacteriophage 61
2.10.1 Lambda biology 61
2.10.2 In vitro packaging 65
2.10.3 Insertion vectors 66
2.10.4 Replacement vectors 68
2.11 Cosmids 71
2.12 Supervectors: YACs and BACs 72
2.13 Summary 73
3 Genomic and cDNA Libraries 75
3.1 Genomic libraries 77
3.1.1 Partial digests 77
3.1.2 Choice of vectors 80
3.1.3 Construction and evaluation of a genomic library 83
3.2 Growing and storing libraries 86
3.3 cDNA libraries 87
3.3.1 Isolation of mRNA 88
3.3.2 cDNA synthesis 89
3.3.3 Bacterial cDNA 93
3.4 Screening libraries with gene probes 94
3.4.1 Hybridization 94
3.4.2 Labelling probes 98
3.4.3 Steps in a hybridization experiment 99
3.4.4 Screening procedure 100
3.4.5 Probe selection and generation 101
3.5 Screening expression libraries with antibodies 103
3.6 Characterization of plasmid clones 106
3.6.1 Southern blots 107
3.6.2 PCR and sequence analysis 108
4 Polymerase Chain Reaction (PCR) 109
4.1 The PCR reaction 110
4.2 PCR in practice 114
4.2.1 Optimisation of the PCR reaction 114
4.2.2 Primer design 115
4.2.3 Analysis of PCR products 117
4.2.4 Contamination 118
4.3 Cloning PCR products 119
4.4 Long-range PCR 121
4.5 Reverse-transcription PCR 123
4.6 Quantitative and real-time PCR 123
4.6.1 SYBR Green 123
4.6.2 TaqMan 125
4.6.3 Molecular beacons 125
4.7 Applications of PCR 127
4.7.1 Probes and other modified products 127
4.7.2 PCR cloning strategies 128
4.7.3 Analysis of recombinant clones and rare events 129
4.7.4 Diagnostic applications 130
5 Sequencing a Cloned Gene 131
5.1 DNA sequencing 131
5.1.1 Principles of DNA sequencing 131
5.1.2 Automated sequencing 136
5.1.3 Extending the sequence 137
5.1.4 Shotgun sequencing; contig assembly 138
5.2 Databank entries and annotation 140
5.3 Sequence analysis 146
5.3.1 Identification of coding region 146
5.3.2 Expression signals 147
5.4 Sequence comparisons 148
5.4.1 DNA sequences 148
5.4.2 Protein sequence comparisons 151
5.4.3 Sequence alignments: Clustal 157
5.5 Protein structure 160
5.5.1 Structure predictions 160
5.5.2 Protein motifs and domains 162
5.6 Confirming gene function 165
5.6.1 Allelic replacement and gene knockouts 166
5.6.2 Complementation 168
6 Analysis of Gene Expression 169
6.1 Analysing transcription 169
6.1.1 Northern blots 170
6.1.2 Reverse transcription-PCR 171
6.1.3 In situ hybridization 174
6.2 Methods for studying the promoter 174
6.2.1 Locating the promoter 175
6.2.2 Reporter genes 177
6.3 Regulatory elements and DNA-binding proteins 179
6.3.1 Yeast one-hybrid assays 179
6.3.2 DNase I footprinting 181
6.3.3 Gel retardation assays 181
6.3.4 Chromatin immunoprecipitation (ChIP) 183
6.4 Translational analysis 185
6.4.1 Western blots 185
6.4.2 Immunocytochemistry and immunohistochemistry 187
7 Products from Native and Manipulated Cloned Genes 189
7.1 Factors affecting expression of cloned genes 190
7.1.1 Transcription 190
7.1.2 Translation initiation 192
7.1.3 Codon usage 193
7.1.4 Nature of the protein product 194
7.2 Expression of cloned genes in bacteria 195
7.2.1 Transcriptional fusions 195
7.2.2 Stability: conditional expression 198
7.2.3 Expression of lethal genes 201
7.2.4 Translational fusions 201
7.3 Yeast systems 204
7.3.1 Cloning vectors for yeasts 204
7.3.2 Yeast expression systems 206
7.4 Expression in insect cells: baculovirus systems 208
7.5 Mammalian cells 209
7.5.1 Cloning vectors for mammalian cells 210
7.5.2 Expression in mammalian cells 213
7.6 Adding tags and signals 215
7.6.1 Tagged proteins 215
7.6.2 Secretion signals 217
7.7 In vitro mutagenesis 218
7.7.1 Site-directed mutagenesis 218
7.7.2 Synthetic genes 223
7.7.3 Assembly PCR 223
7.7.4 Synthetic genomes 224
7.7.5 Protein engineering 224
7.8 Vaccines 225
7.8.1 Subunit vaccines 225
7.8.2 DNA vaccines 226
8 Genomic Analysis 229
8.1 Overview of genome sequencing 229
8.1.1 Strategies 230
8.2 Next generation sequencing (NGS) 231
8.2.1 Pyrosequencing (454) 232
8.2.2 SOLiD sequencing (Applied Biosystems) 235
8.2.3 Bridge amplification sequencing (Solexa/Ilumina) 237
8.2.4 Other technologies 239
8.3 De novo sequence assembly 239
8.3.1 Repetitive elements and gaps 240
8.4 Analysis and annotation 242
8.4.1 Identification of ORFs 243
8.4.2 Identification of the function of genes and their products 250
8.4.3 Other features of nucleic acid sequences 251
8.5 Comparing genomes 256
8.5.1 BLAST 256
8.5.2 Synteny 257
8.6 Genome browsers 258
8.7 Relating genes and functions: genetic and physical maps 260
8.7.1 Linkage analysis 261
8.7.2 Ordered libraries and chromosome walking 262
8.8 Transposon mutagenesis and other screening techniques 263
8.8.1 Transposition in bacteria 263
8.8.2 Transposition in Drosophila 266
8.8.3 Transposition in other organisms 268
8.8.4 Signature-tagged mutagenesis 269
8.9 Gene knockouts, gene knockdowns and gene silencing 271
8.10 Metagenomics 273
8.11 Conclusion 274
9 Analysis of Genetic Variation 275
9.1 Single nucleotide polymorphisms 276
9.1.1 Direct sequencing 278
9.1.2 SNP arrays 279
9.2 Larger scale variations 280
9.2.1 Microarrays and indels 281
9.3 Other methods for studying variation 282
9.3.1 Genomic Southern blot analysis: restriction fragment length polymorphisms (RFLPs) 282
9.3.2 VNTR and microsatellites 285
9.3.3 Pulsed-field gel electrophoresis 287
9.4 Human genetic variation: relating phenotype to genotype 289
9.4.1 Linkage analysis 289
9.4.2 Genome-wide association studies (GWAS) 292
9.4.3 Database resources 294
9.4.4 Genetic diagnosis 294
9.5 Molecular phylogeny 295
9.5.1 Methods for constructing trees 298
10 Post-Genomic Analysis 305
10.1 Analysing transcription: transcriptomes 305
10.1.1 Differential screening 306
10.1.2 Other methods: transposons and reporters 308
10.2 Array-based methods 308
10.2.1 Expressed sequence tag (EST) arrays 309
10.2.2 PCR product arrays 310
10.2.3 Synthetic oligonucleotide arrays 312
10.2.4 Important factors in array hybridization 313
10.3 Transcriptome sequencing 315
10.4 Translational analysis: proteomics 316
10.4.1 Two-dimensional electrophoresis 317
10.4.2 Mass spectrometry 318
10.5 Post-translational analysis: protein interactions 320
10.5.1 Two-hybrid screening 320
10.5.2 Phage display libraries 321
10.6 Epigenetics 323
10.7 Integrative studies: systems biology 324
10.7.1 Metabolomic analysis 324
10.7.2 Pathway analysis and systems biology 325
11 Modifying Organisms: Transgenics 327
11.1 Transgenesis and cloning 327
11.1.1 Common species used for transgenesis 328
11.1.2 Control of transgene expression 330
11.2 Animal transgenesis 333
11.2.1 Basic methods 333
11.2.2 Direct injection 333
11.2.3 Retroviral vectors 335
11.2.4 Embryonic stem cell technology 336
11.2.5 Gene knockouts 339
11.2.6 Gene knock-down technology: RNA interference 340
11.2.7 Gene knock-in technology 341
11.3 Applications of transgenic animals 342
11.4 Disease prevention and treatment 343
11.4.1 Live vaccine production: modification of bacteria and viruses 343
11.4.2 Gene therapy 346
11.4.3 Viral vectors for gene therapy 347
11.5 Transgenic plants and their applications 349
11.5.1 Introducing foreign genes 349
11.5.2 Gene subtraction 351
11.5.3 Applications 352
11.6 Transgenics: a coda 353
Glossary 355
Bibliography 375
Index 379
What People are Saying About This
“This third edition is absolutely necessary to incorporate the recent advances, such as genome sequencing, polymerase chain reaction, and microarray technology, in this field.” (Doody’s, 19 October 2012)