Frontiers in Geochemistry: Contribution of Geochemistry to the Study of the Earth / Edition 1

Frontiers in Geochemistry: Contribution of Geochemistry to the Study of the Earth / Edition 1

by Russell Harmon, Andrew Parker
     
 

This book is a contribution to the International Year of Planet Earth arising from the 33rd International Geological Congress, held in Oslo, Norway during August 2008. The first section of the book considers aspects of geochemical processes which led to the development of the solid Earth as it is today. The second portion of the book shows how the rapidly-evolving

See more details below

Overview

This book is a contribution to the International Year of Planet Earth arising from the 33rd International Geological Congress, held in Oslo, Norway during August 2008. The first section of the book considers aspects of geochemical processes which led to the development of the solid Earth as it is today. The second portion of the book shows how the rapidly-evolving analytical tools and approaches presently used by geochemists may be used to solve emerging environmental and other societal problems.

This unique collection of reviews, with contributions from a range of internationally distinguished scientists, will be invaluable reading for advanced students and others interested in the central role geochemistry in the earth sciences.

Product Details

ISBN-13:
9781405193375
Publisher:
Wiley
Publication date:
05/03/2011
Pages:
280
Product dimensions:
7.40(w) x 9.60(h) x 0.70(d)

Related Subjects

Meet the Author

Russell Harmon is a Program Manager at the ARL Army Research Office, where he manages the extramural basic research program in terrestrial sciences which focuses on terrain properties and characterization, terrestrial processes and dynamics, terrestrial system analysis and modeling, and geospatial information science. University and. He is a Fellow of the Geological Society of America and National Speleological Society and Past President of the International Association of GeoChemistry.

Andrew Parker is an environmental geochemist, and was formerly Head of the Postgraduate Research Institute for Sedimentology, University of Reading, UK.

Table of Contents

Part 1.

Contribution of geochemistry to the study of the Planet: Historical perspectives.

This Part will comprise a historical review of geochemistry and its applications and contributions to the study of the earth. Topics of interest include: the geochemistry and secular geochemical evolution of the earth’s mantle & lower crust, geochemistry and secular geochemical evolution of the continental crust, geochemistry of the earth’s oceanic crust, composition and geochemical evolution of seawater, the geochemistry of hydrothermal processes and ore deposits, the weathering geochemistry of silicate rocks, the geochemistry of sediment diagenesis, global geochemical cycles & the geochemistry & secular evolution of sedimentary rocks, geochemistry of sedimentary basins and their fluids, geochemistry and secular evolution of ground waters, isotopic geochemistry of the global hydrological cycle, and global geochemistry of river systems..

Geochemistry and Secular Geochemical Evolution of the Earth’s Mantle & Lower Crust.

Al Hofmann (Alex Halliday).

Max-Planck-Institut für Chemie.

Postfach 3060.

D-55020 Mainz.

Germany.

The Geochemistry & Secular Geochemical Evolution of the Continental Crust.

Chris Hawkesworth (Balz Kamber) Department of Earth Sciences.

University of Bristol.

Bristol BS8 1RJ UK.

c.j.hawkesworth@bris.ac.uk.

.

The Geochemistry of the Earth’s Oceanic Crust.

ü Wolfgang Bach.

Fachgebiet Petrologie der Ozeankruste.

Universität Bremen.

Postfach 330 440.

D-28334 Bremen, Germany wbach@uni-bremen.de.

The Geochemistry of Volcanic Systems & Magmatic Processes.

Jim Gill.

Department of Earth Sciences.

University of California, Santa Cruz.

Santa Cruz, CA 95064.

jgill@es.ucsc.edu.

Composition and Geochemical Evolution of Seawater.

ü Heinrich Holland.

Department of Earth & Planetary Sciences.

Harvard University.

Cambridge, MA 02318 USA.

holland@eps.harvard.edu.

.

The Geochemistry of Hydrothermal Processes and Ore Deposits in the Continental Crust.

Jeffery Hedenquist.

Department of Geology & Engineering Geology.

Colorado School of Mines.

Golden, CO 80401 USA.

jhedenqu@mines.edu.

The Weathering Geochemistry Silicate Rocks.

Sigurdur Gislason.

Institute of Earth Sciences.

University of Iceland.

Askja, Sturlugata 7.

101 Reykjavík.

Iceland.

sigrg@raunvis.hi.is.

The Geochemistry of Sediment Diagenesis.

Simon Poulton.

School of Civil Engineering & Geosciences.

Newcastle University.

Newcastle upon Tyne.

UK NE1 7RU.

s.w.poulton@ncl.ac.uk.

Global Geochemical Cycles & the Geochemistry & Secular Evolution of Sedimentary Rocks.

ü Fred Mackenzie.

Department of Oceanography.

School of Ocean and Earth Science and Technology.

University of Hawai'i at Manoa.

1000 Pope Road Honolulu, HI 96822.

fredm@soest.hawaii.edu.

Geochemistry of Sedimentary Basins and Their Fluids.

ü Norbert Clauer.

Université Louis Pasteur Strasbourg.

CGS / EOST, UMR 7517.

67084 Strasbourg.

France.

nclauer@illite.u-strasbg.fr.

Geochemistry and Secular Evolution of Ground Waters.

ü Tom Paces.

Czech Geological Survey.

Klarov 3/313.

118 21 Prague 1, Czech Republic.

Abstract.

Ground water is involved in a slow global geological cycle of matter and it is a subject of fast hydrological cycle. It has been involved in formation of rocks from magmatic melts through crystallization, weathering, diagenesis, metamorphism and melting. During the rock cycle water changes its chemical and isotopic composition. Chemical and isotopic composition of natural waters is a result of physico-chemical processes between water, rock and atmosphere and consequent mixing of different ground water and surface water bodies. The interaction is influenced often by biota and today more increasingly by man. Water is a continuum and the separation of genetic types is sometimes artificial and often impossible. In spite of this, the genetic classification of water is useful because it relates water to differences in residence time of water bodies in various geological environments and to various geochemical processes. Tracing the secular evolution of ground water in the context of the geological and hydrological cycles is now possible due to new advances in isotopic geochemistry. Traditional radioactive and stable isotopes such as are supplemented today with data on 11B, 37Cl, 81Br, 44Ca, 3He/4He, 53Cr, 65Cu, 30Si, rare earth elements and noble gases.

Groundwater tracers with a wide dating range (T, 3H/3He, 85Kr, 39Ar, 14C and 4He) enable us to follow secular chemical changes in sedimentary basins. Changes in contents of Rn, F, CO2 and an increase in the ratio 4He/3He of dissolved helium in water during earthquakes indicate relationship between deep tectonic processes and composition of ground water. The common existence of fossil Na — Ca — Cl brines in oil fields, fluid inclusions in minerals and in fractures in old crystalline platforms suggests that the geologically old stagnant waters are result of secular development of the Earth crust. A case of a Na — SO4 brine (140 g/l) in crystalline basement of a Tertiary basin indicates that it is a result of an evolution of Tertiary volcanic volatiles dissolved in a playa lake, subsequent oxidation and evaporation, crystallization of fossil salts in fractures of rocks and final leaching of the salts by present-day meteoric water charged with magmatic CO2. Such a set of complex steps is needed to explain the composition of ground water in fractures of Variscian granite in the Bohemian Massif of central Europe. Prediction of future secular changes in chemical composition of ground water is an important criterion of safety assessment of potential repositories of spent nuclear fuel. A possible future glacial period will influence mixing of ice melt and sea water in the shield of Fennoscandia. A powerful tool to predict the future secular changes is a mathematical modelling of geological and geochemical processes that will influence chemical and isotopic composition of ground water within next one million years..

Isotopic Geochemistry of the Global Hydrological Cycle.

ü Torsten Vennemann.

Institute of Mineralogy and Geochemistry.

University of Lausanne.

Anthropole, CH-1015 Lausanne.

Switzerland.

Torsten.Vennemann@unil.ch.

Global Geochemistry of River Systems ü Michel Meybeck.

Laboratoire de Géologie Appliquée.

Sisyphe Université Paris.

6 Place Jussieu.

F-75257 Paris, France.

Michel.meybeck@ccr.jussiue.fr.

Mining Impacts on the Geochemistry of the Natural Environment.

D. Kirk Nordstrom.

US Geological Survey.

3215 Marine Street.

Boulder, CO 80303 USA.

dkn@usgs.gov.

Part 2.

Contribution of geochemistry to the study of the Planet: Today and tomorrow.

This Part will consider current and future developments in geochemistry and how the rapidly-evolving analytical tools and approaches used by geochemists may be used to solve emerging environmental and other societal problems. Topics of interest include: emerging geochemical and microanalytical techniques, the future of stable isotope geochemistry of light and metal elements, microbial geochemistry, nanogeochemistry, mineral surface geochemistry, molecular environmental geochemistry, medical geochemistry, forensic geochemistry, archaeological geochemistry, urban geochemistry, hydrogeochemistry of pharmaceuticals, hormones and other organic contaminants, human geochemical impacts on the natural environment, geochemistry of landscape dynamics, geochemistry of radioactive waste disposal, geochemistry of carbon sequestration, and geochemical contributions to understanding global change..

Emerging Geochemical Microanalytical Techniques.

ü Martin Whitehouse.

Laboratory for Isotope Geology.

Swedish Museum of Natural History.

Box 50007.

SE-104 05 Stockholm, Sweden.

martin.whitehouse@nrm.se.

The Future of Light Stable Isotope Geochemistry.

ü Jochen Hoefs.

Geochemisches Institute.

Goldschmidtstarsse 1.

Universität Göttingen.

D-63038 Göttingen, Germany.

jhoefs@gwdg.de.

New Directions in the Stable Isotope Geochemistry of the Metal Elements.

ü Tom Bullen.

US Geological Survey.

345 Middlefield Road.

Menlo Park, CA 94025 USA.

tbullen@usgs.gov.

Microbial Geochemistry.

ü Philip Bennett.

University of Texas at Austin.

Department of Geological Sciences.

1 University Station C1100.

Austin, TX 78712 USA.

pbennett@mail.utexas.edu.

Nanogeochemistry, Mineral Surface Geochemistry, & Molecular Environmental Geochemistry Michael F. Hochella, Jr.

Department of Geosciences.

Virginia Tech.

Blacksburg, VA 24061.

hochella@vt.edu.

Human Geochemical Impacts on the Natural Environment.

Carlo Barbante (Jane Plant).

Department of Environmental Science.

Ca' Foscari University.

Dorsoduro, 2137.

30123 Venice, Italy.

barbante@unive.it.

Medical Geochemistry.

Olle Selinus.

Geological Survey of Sweden.

PO Box 670.

SE-751 28 Uppsala, Sweden.

olle.selinus@sgu.se.

.

.

Forensic Geochemistry.

Jurian Hoogewerff.

Centre for Forensic Provenancing.

School of Chemistry b& Pharmacy.

University of East Anglia.

Norwich NR4 7TJ UK.

j.hoogewerff@uea.ac.uk.

Archaeological Geochemistry.

ü Henry Schwarcz.

School of Geography & Earth Sciences.

McMaster University.

Hamilton, Ontario L8S 4K1 Canada.

schwarcz@mcmaster.ca.

Urban Geochemistry.

ü Rolf Ottensen & Morten Jartun.

Geological Survey of Norway.

NO-7491 Trondheim, Norway.

rolf.ottesen@ngu & morten.jartun@ngu.no.

Hydrogeochemistry of Pharmaceuticals, Hormones, & Other Organic Contaminants.

Dr.ThomasTernes.

Federal Institute of Hydrology.

Koblenz, Germany.

ternes@bafg.de.

Geochemistry of Landscape Dynamics.

James Kirchner.

Federal Institute for Forest, Snow, & Landscape Research.

Zűrcherstrasse 111.

8903 Birmensdorf, Switzerland.

james/kirchner@wsl.ch

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >