Functions of Several Variables / Edition 2

Functions of Several Variables / Edition 2

by Wendell H Fleming
     
 

ISBN-10: 0387902066

ISBN-13: 9780387902067

Pub. Date: 03/08/1977

Publisher: Springer New York

This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid…  See more details below

Overview

This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.

Product Details

ISBN-13:
9780387902067
Publisher:
Springer New York
Publication date:
03/08/1977
Series:
Undergraduate Texts in Mathematics Series
Edition description:
2nd ed. 1977. Corr. 3rd printing 1987
Pages:
412
Product dimensions:
6.40(w) x 9.30(h) x 1.30(d)

Table of Contents

1 Euclidean spaces.- 1.1 The real number system.- 1.2 Euclidean En.- 1.3 Elementary geometry of En.- 1.4 Basic topological notions in En.- *1.5 Convex sets.- 2 Elementary topology of En.- 2.1 Functions.- 2.2 Limits and continuity of transformations.- 2.3 Sequences in En.- 2.4 Bolzano-Weierstrass theorem.- 2.5 Relative neighborhoods, continuous transformations.- 2.6 Topological spaces.- 2.7 Connectedness.- 2.8 Compactness.- 2.9 Metric spaces.- 2.10 Spaces of continuous functions.- *2.11 Noneuclidean norms on En.- 3 Differentiation of real-valued functions.- 3.1 Directional and partial derivatives.- 3.2 Linear functions.- **3.3 Difierentiable functions.- 3.4 Functions of class C(q).- 3.5 Relative extrema.- *3.6 Convex and concave functions.- 4 Vector-valued functions of several variables.- 4.1 Linear transformations.- 4.2 Affine transformations.- 4.3 Differentiable transformations.- 4.4 Composition.- 4.5 The inverse function theorem.- 4.6 The implicit function theorem.- 4.7 Manifolds.- 4.8 The multiplier rule.- 5 Integration.- 5.1 Intervals.- 5.2 Measure.- 5.3 Integrals over En.- 5.4 Integrals over bounded sets.- 5.5 Iterated integrals.- 5.6 Integrals of continuous functions.- 5.7 Change of measure under affine transformations.- 5.8 Transformation of integrals.- 5.9 Coordinate systems in En.- 5.10 Measurable sets and functions; further properties.- 5.11 Integrals: general definition, convergence theorems.- 5.12 Differentiation under the integral sign.- 5.13 Lp-spaces.- 6 Curves and line integrals.- 6.1 Derivatives.- 6.2 Curves in En.- 6.3 Differential 1-forms.- 6.4 Line integrals.- *6.5 Gradient method.- *6.6 Integrating factors; thermal systems.- 7 Exterior algebra and differential calculus.- 7.1 Covectors and differential forms of degree 2.- 7.2 Alternating multilinear functions.- 7.3 Multicovectors.- 7.4 Differential forms.- 7.5 Multivectors.- 7.6 Induced linear transformations.- 7.7 Transformation law for differential forms.- 7.8 The adjoint and codifferential.- *7.9 Special results for n = 3.- *7.10 Integrating factors (continued).- 8 Integration on manifolds.- 8.1 Regular transformations.- 8.2 Coordinate systems on manifolds.- 8.3 Measure and integration on manifolds.- 8.4 The divergence theorem.- *8.5 Fluid flow.- 8.6 Orientations.- 8.7 Integrals of r-forms.- 8.8 Stokes’s formula.- 8.9 Regular transformations on submanifolds.- 8.10 Closed and exact differential forms.- 8.11 Motion of a particle.- 8.12 Motion of several particles.- Axioms for a vector space.- Mean value theorem; Taylor’s theorem.- Review of Riemann integration.- Monotone functions.- References.- Answers to problems.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >