×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Fundamentals of Industrial Catalytic Processes / Edition 2
     

Fundamentals of Industrial Catalytic Processes / Edition 2

by C. H. Bartholomew, Robert J. Farrauto
 

ISBN-10: 0471457132

ISBN-13: 9780471457138

Pub. Date: 10/05/2005

Publisher: Wiley

Catalysis is central to the chemical industry, as it is directly or involved in the production of almost all useful chemical products. In this book the authors, present the definitive account of industrial catalytic processes. Throughout Fundamentals of Industrial Catalytic Processes the information is illustrated with many case studies and problems. This book

Overview

Catalysis is central to the chemical industry, as it is directly or involved in the production of almost all useful chemical products. In this book the authors, present the definitive account of industrial catalytic processes. Throughout Fundamentals of Industrial Catalytic Processes the information is illustrated with many case studies and problems. This book is valuable to anyone wanting a clear account of industrial catalytic processes, but is particularly useful to industrial and academic chemists and engineers and graduate working on catalysis. This book also:

  • Covers fundamentals of catalytic processes, including chemistry, catalyst preparation, properties and reaction engineering.
  • Addresses heterogeneous catalytic processes employed by industry.
  • Provides detailed data on existing catalysts and catalytic reactions, process design and chemical engineering.
  • Covers catalysts used in fuel cells.

Product Details

ISBN-13:
9780471457138
Publisher:
Wiley
Publication date:
10/05/2005
Edition description:
Second Edition
Pages:
996
Product dimensions:
8.80(w) x 11.30(h) x 1.90(d)

Table of Contents

Preface.

Acknowledgements.

Nomenclature.

Part One: Introduction and Fundamentals.

1 Catalysis: Introduction and Fundamental Catalytic Phenomena.

1.1 Emergence of Catalyst Technology, A Brief History.

1.2 Importance of Catalysis and Catalyst Technology.

1.3 Fundamental Catalytic Phenomena and Principles.

2 Catalyst Materials, Properties and Preparation.

2.1 Introduction.

2.2 Catalyst Materials.

2.3 Catalyst Properties.

2.4 Catalyst Preparation and Forming.

2.5 The Future.

3 Catalyst Characterization and Selection.

3.1 Principles and Objectives of Catalyst Characterization.

3.2 Determining Physical Properties of Catalysts.

3.3 Determining Chemical Properties of Catalysts.

3.4 Catalyst Selection.

4 Reactors, Reactor Design, and Activity Testing.

4.1 Definition and Classification of Reactors.

4.2 Fundamentals of Reactor Design.

4.3 Collecting, Analyzing and Reporting Data from Laboratory Reactors.

4.4 Choosing Reactors in the Laboratory and Plant.

5 Catalyst Deactivation: Causes, Mechanisms, and Treatment.

5.1 Introduction.

5.2 Causes and Mechanisms of Deactivation.

5.3 Prevention and Regenerative Treatment of Catalyst Decay.

5.4 Treatment of Catalyst Decay in Reactor and Process Design and Operation.

Part Two: Industrial Practice.

6 Hydrogen Production and Synthesis Gas Reactions.

6.1 Introduction.

6.2 Production of Hydrogen and Synthesis Gas via Steam Reforming.

6.3 Ammonia Synthesis.

6.4 Methanol Synthesis.

6.5 Fischer-Tropsch Synthesis.

7 Hydrogenation and Dehydrogenation of Organic Compounds.

7.1 Introduction.

7.2 Hydrogenation Catalyst and Reactor Technologies.

7.3 Hydrogenation Reactions and Processes.

7.4 Dehydrogenation: Reaction Chemistry; Catalyst and Reactor Technologies.

7.5 Important Dehydrogenation Reactions and Processes.

8 Catalytic Oxidations of Inorganic and Organic Compounds.

8.1 Catalytic Oxidation Reactions.

8.2 Oxidation of Inorganic Compounds,

8.3 Hydrogen Cyanide Production (Ammoxidation of Methane).

8.4 Selective (Partial) Oxidation of Organic Compounds.

8.5 Future of Catalytic Oxidation.

9 Petroleum Refining and Processing.

9.1 Petroleum Refining.

9.2 Hydrotreating.

9.3 Catalytic Cracking.

9.4 Hydrocracking.

9.5 Naphtha Reforming.

9.6 Isomerization.

9.7 Alkylation.

9.8 Reformulated Gasoline and Methyl-t-Butyl Ether.

10 Environmental Catalysis: Mobile Sources.

10.1 Introduction

10.2 Automotive Gasoline Catalytic Converters.

10.3 Catalytic Abatement of Emissions from Diesel Engines.

10.4 Ozone Abatement in High-Flying Commercial Aircraft.

11 Environmental Catalysis: Stationary Sources.

11.1 Introduction.

11.2 Catalytic Reduction of NOx

11.3 Catalytic Oxidation of Hydrocarbon (VOC) Emissions

11.4 Catalytic Oxidation of CO Emissions

11.5 Kinetics of and Reactor Design for CO and VOC Oxidations.

11.6 Catalytic Abatement of Emissions from Wood Stoves.

12 Homogeneous, Enzyme, And Polymerization Catalysis.

12.1 Homogeneous Catalysis.

12.2 Enzyme Catalysis.

12.3 Polymerization Catalysis.

13 Hydrogen Production and Fuel Cells: Catalyst Technology.

13.1 Introduction, Perspective, and Objectives

13.2 Production of Hydrogen for Fuel cells.

13.3 The Proton Exchange Membrane (PEM) Fuel Cell.

13.4 Other Fuel Cells.

Glossary 939

Index 954

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews