Fundamentals of Rock Mechanics / Edition 4

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $58.89
Usually ships in 1-2 business days
(Save 50%)
Other sellers (Hardcover)
  • All (11) from $58.89   
  • New (7) from $62.71   
  • Used (4) from $58.89   


Widely regarded as the most authoritative and comprehensive book in its field, the fourth edition of Fundamentals of Rock Mechanics includes new and substantially updated chapters to this highly praised text.

  • Extensively updated throughout, this new edition contains substantially expanded chapters on poroelasticity, wave propogation, and subsurface stresses
  • Features entirely new chapters on rock fractures and micromechanical models of rock behaviour
  • Discusses fundamental concepts such as stress and strain
  • Offers a thorough introduction to the subject before expertly delving into a fundamental, self-contained discussion of specific topics
  • Unavailable for many years, now back by popular demand.

An Instructor manual CD-ROM for this title is available. Please contact our Higher Education team at for more information.


“With this attention to detail, and rigorous adherence to clarity and exactness in description, this edition will consolidate the standing achieved by the earlier editions as a most authoritative and comprehensive book in its field. It will continue to serve as a leading reference work for geoscientists interested in structural geology, tectonics and petrophysics as well as for civil, mining and petroleum engineers.” (Petroleum Geoscience)

"...I consider this book to be an invaluable reference for studying and understanding the fundamental science at the base of rock mechanics. I believe this to be a must-have textbook and I strongly recommend it to anyone, student or professional, interested in the subject." (Rock Mechanics and Rock Engineering)

"An excellent book, very well presented, and is a must for the shelves of serious engineers and scientists active or interested in the fields of rock mechanics and rock engineering.... Highly recommended." (South African Geographical Journal, 2008)

Read More Show Less

Editorial Reviews

From the Publisher
"An excellent book, very well presented, and is a must for the shelves of serious engineers and scientists active or interested in the fields of rock mechanics and rock engineering.... Highly recommended." (South African Geographical Journal, 2008)

"...I consider this book to be an invaluable reference for studying and understanding the fundamental science at the base of rock mechanics. I believe this to be a must-have textbook and I strongly recommend it to anyone, student or professional, interested in the subject." (Rock Mechanics and Rock Engineering)

Read More Show Less

Product Details

  • ISBN-13: 9780632057597
  • Publisher: Wiley
  • Publication date: 3/28/2007
  • Edition description: Revised
  • Edition number: 4
  • Pages: 488
  • Product dimensions: 7.70 (w) x 10.00 (h) x 1.24 (d)

Meet the Author

John Conrad Jaeger received a first-class honours degree in mathematics and physics from the University of Sydney, was Wrangler (class I) in the Mathematical Tripos at Cambridge, and received a DSc in applied mathematics from the University of Sydney. He was a professor at the University of Tasmania and the Australian National University. He was the author of several monographs in applied mathematics, including, with H. S. Carslaw, Conduction of Heat in Solids, and was a Fellow of the Australian Academy of Science and the Royal Society.

Neville G. W. Cook received a BS and PhD in geophysics from the University of Witwatersrand. He was the founder and first director of the Mining Research Laboratory of the South African Chamber of Mines, and in 1971 he received the Gold Medal of the Scientific and Technical Societies, the highest scientific award in South Africa. He was Donald H. McLaughlin Chair in Mineral Engineering at the University of California at Berkeley, and was a member of the U. S. National Academy of Engineering.

Robert Zimmerman received BS and MS degrees from Columbia University, and a PhD from the University of California at Berkeley. He has been a staff scientist in the Earth Sciences Division of the Lawrence Berkeley National Laboratory, and Reader in Rock Mechanics at Imperial College, London. He is currently Professor of Engineering Geology at the Royal Institute of Technology in Stockholm, and co-editor of the International Journal of Rock Mechanics. He is also the author of the monograph Compressibility of Sandstones.

Read More Show Less

Table of Contents

1. Rock as a Material.

1.1 Introduction.

1.2 Joints and faults.

1.3 Rock-forming minerals.

1.4 The fabric of rocks.

1.5 The mechanical nature of rock.

2. Analysis of Stress and Strain.

2.1 Introduction.

2.2 Definition of traction and stress.

2.3 Analysis of stress in two dimensions.

2.4 Graphical representations of stress in two dimensions.

2.5 Stresses in three dimensions.

2.6 Stress transformations in three dimensions.

2.7 Mohr’s representation of stress in three dimensions.

2.8 Stress invariants and stress deviation.

2.9 Displacement and strain.

2.10 Infinitesimal strain in two dimensions.

2.11 Infinitesimal strain in three dimensions.

2.12 Determination of principle stresses or strains from measurements.

2.13 Compatibility equations.

2.14 Stress and strain in polar and cylindrical coordinates.

2.15 Finite strain.

3. Friction on Rock Surfaces.

3.1 Introduction.

3.2 Amonton’s law.

3.3 Friction on rock surfaces.

3.4 Stick-slip oscillations.

3.5 Sliding on a plane of weakness.

3.6 Effects of time and velocity.

4. Deformation and Failure of Rock.

4.1 Introduction.

4.2 The stress-strain curve.

4.3 Effects of confining stress and temperature.

4.4 Types of fracture.

4.5 Coulomb failure criterion.

4.6 Mohr’s hypothesis.

4.7 Effects of pore fluids.

4.8 Failure under true-triaxial conditions.

4.9 The effect of anisotropy on strength.

5. Linear Elasticity.

5.1 Introduction.

5.2 Stress-strain relations for an isotropic linear elastic solid.

5.3 Special cases.

5.4 Hooke’s law in terms of deviatoric stresses and strains.

5.5 Equations of stress equilibrium.

5.6 Equations of stress equilibrium in cylindrical and spherical coordinates.

5.7 Airy stress functions.

5.8 Elastic strain energy and related principles.

5.9 Uniqueness theorem for elasticity problems.

5.10 Stress-strain relations for anisotropic materials.

6. Laboratory Testing of Rocks.

6.1 Introduction.

6.2 Hydrostatic tests.

6.3 Uniaxial compression.

6.4 Triaxial tests.

6.5 Stability and stiff testing machines.

6.6 True-triaxial tests.

6.7 Diametral compression of cylinders.

6.8 Torsion of circular cylinders.

6.9 Bending tests.

6.10 Hollow cylinders.

7. Poroelasticity and Thermoelasticity.

7.1 Introduction.

7.2 Hydrostatic poroelasticity.

7.3 Undrained compression.

7.4 Constitutive equations of poroelasticity.

7.5 Equations of stress equilibrium and fluid flow.

7.6 One-dimensional consolidation.

7.7 Applications of poroelasticity.

7.8 Thermoelasticity.

8. Stresses around Cavities and Excavations.

8.1 Introduction.

8.2 Complex variable method for two-dimensional elasticity problems.

8.3 Homogeneous state of stress.

8.4 Pressurised hollow cylinder.

8.5 Circular hole in a rock mass with given far-field principal stresses.

8.6 Stresses applied to a circular hole in an infinite rock mass.

8.7 Stresses applied to the surface of a solid cylinder.

8.8 Inclusions in an infinite region.

8.9 Elliptical hole in an infinite rock mass.

8.10 Stresses near a crack tip.

8.11 Nearly rectangular hole.

8.12 Spherical cavities.

8.13 Penny-shaped cracks.

8.14 Interactions between nearby cavities.

9. Inelastic Behavior.

9.1 Introduction.

9.2 Plasticity and yield.

9.3 Elastic-plastic hollow cylinder.

9.4 Circular hole in an elastic-brittle-plastic rock mass.

9.5 Perfectly plastic behavior.

9.6 Flow between flat surfaces.

9.7 Flow rules and hardening.

9.8 Creep.

9.9 Simple rheological models.

9.10 Theory of viscoelasticity.

9.11 Some simple viscoelastic problems.

10. Micromechanical Models.

10.1 Introduction.

10.2 Effective moduli of heterogeneous rocks.

10.3 Effect of pores on compressibility.

10.4 Crack closure and elastic nonlinearity.

10.5 Effective medium theories.

10.6 Sliding crack friction and hysteresis.

10.7 Griffith cracks and the Griffith locus.

10.8 Griffith theory of failure.

10.9 Linear elastic fracture mechanics.

11. Wave Propagation in Rocks.

11.1 Introduction.

11.2 One-dimensional elastic wave propagation.

11.3 Harmonic waves and group velocity.

11.4 Elastic waves in unbounded media.

11.5 Reflection and refraction of waves at an interface.

11.6 Surface and interface waves.

11.7 Transient waves.

11.8 Effects of fluid saturation.

11.9 Attenuation.

11.10 Inelastic waves.

12. Hydromechanical Behavior of Fractures.

12.1 Introduction.

12.2 Geometry of rock fractures.

12.3 Normal stiffness of rock fractures.

12.4 Behaviour of rock fractures under shear.

12.5 Hydraulic transmissivity of rock fractures.

12.6 Coupled hydro-mechanical behavior.

12.7 Seismic response of rock fractures.

12.8 Fractured rock masses.

13. State of Stress Underground.

13.1 Introduction.

13.2 Simple models for the state of stress in the subsurface.

13.3 Measured values of subsurface stresses.

13.4 Surface loads on a half-space: two-dimensional theory.

13.5 Surface loads on a half-space: three-dimensional theory.

13.6 Hydraulic fracturing.

13.7 Other stress measurement methods.

14. Geological Applications.

14.1 Introduction.

14.2 Stresses and faulting.

14.3 Overthrust faulting and sliding under gravity.

14.4 Stresses around faults.

14.5 Mechanics of intrusion.

14.6 Beam models for crustal folding.

14.7 Earthquake mechanics.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)