Computer-based information technologies have been extensively used to help industries manage their processes and information systems hereby - come their nervous center. More specially, databases are designed to s- port the data storage, processing, and retrieval activities related to data management in information systems. Database management systems p- vide efficient task support and database systems are the key to impleme- ing industrial data management. Industrial data management requires da- base technique support. Industrial applications, however, are typically data and knowledge intensive applications and have some unique character- tics that makes their management difficult. Besides, some new techniques such as Web, artificial intelligence, and etc. have been introduced into - dustrial applications. These unique characteristics and usage of new te- nologies have put many potential requirements on industrial data mana- ment, which challenge today’s database systems and promote their evolvement. Viewed from database technology, information modeling in databases can be identified at two levels: (conceptual) data modeling and (logical) database modeling. This results in conceptual (semantic) data model and logical database model. Generally a conceptual data model is designed and then the designed conceptual data model will be transformed into a chosen logical database schema. Database systems based on logical database model are used to build information systems for data mana- ment. Much attention has been directed at conceptual data modeling of - dustrial information systems. Product data models, for example, can be views as a class of semantic data models (i. e.
1101309187
Fuzzy Database Modeling of Imprecise and Uncertain Engineering Information
Computer-based information technologies have been extensively used to help industries manage their processes and information systems hereby - come their nervous center. More specially, databases are designed to s- port the data storage, processing, and retrieval activities related to data management in information systems. Database management systems p- vide efficient task support and database systems are the key to impleme- ing industrial data management. Industrial data management requires da- base technique support. Industrial applications, however, are typically data and knowledge intensive applications and have some unique character- tics that makes their management difficult. Besides, some new techniques such as Web, artificial intelligence, and etc. have been introduced into - dustrial applications. These unique characteristics and usage of new te- nologies have put many potential requirements on industrial data mana- ment, which challenge today’s database systems and promote their evolvement. Viewed from database technology, information modeling in databases can be identified at two levels: (conceptual) data modeling and (logical) database modeling. This results in conceptual (semantic) data model and logical database model. Generally a conceptual data model is designed and then the designed conceptual data model will be transformed into a chosen logical database schema. Database systems based on logical database model are used to build information systems for data mana- ment. Much attention has been directed at conceptual data modeling of - dustrial information systems. Product data models, for example, can be views as a class of semantic data models (i. e.
109.99
In Stock
5
1

Fuzzy Database Modeling of Imprecise and Uncertain Engineering Information
210
Fuzzy Database Modeling of Imprecise and Uncertain Engineering Information
210Paperback(Softcover reprint of hardcover 1st ed. 2006)
$109.99
109.99
In Stock
Product Details
ISBN-13: | 9783642067952 |
---|---|
Publisher: | Springer Berlin Heidelberg |
Publication date: | 11/23/2010 |
Series: | Studies in Fuzziness and Soft Computing , #195 |
Edition description: | Softcover reprint of hardcover 1st ed. 2006 |
Pages: | 210 |
Product dimensions: | 6.10(w) x 9.25(h) x 0.36(d) |
From the B&N Reads Blog