Generalized Convexity, Generalized Monotonicity: Recent Results: Recent Results / Edition 1

Generalized Convexity, Generalized Monotonicity: Recent Results: Recent Results / Edition 1

by Jean-Pierre Crouzeix
     
 

ISBN-10: 079235088X

ISBN-13: 9780792350880

Pub. Date: 08/31/1998

Publisher: Springer US

The geometrical structure induced by convexity in mathematical programming has many useful properties: continuity and differentiability of the functions, separability and optimality conditions, duality, sensibility of the optimal solutions, etc. Several of the most interesting ones are preserved when convexity is relaxed in quasiconvexity or pseudoconvexity (a

…  See more details below

Overview

The geometrical structure induced by convexity in mathematical programming has many useful properties: continuity and differentiability of the functions, separability and optimality conditions, duality, sensibility of the optimal solutions, etc. Several of the most interesting ones are preserved when convexity is relaxed in quasiconvexity or pseudoconvexity (a function is quasi-convex if its lower level sets are convex). This is still the case for variational inequalities problems when the classical monotonicity assumption on the map is relaxed in quasimonotonicity or pseudomonotonicity.
This volume contains 23 selected lectures presented at the most recent international symposium on generalized convexity. It provides an up-to-date review of recent developments.
Audience: The book will be of value to researchers and students working in economics, mathematical programming, operations research, management sciences, equilibrium problems, engineering and probability.

Read More

Product Details

ISBN-13:
9780792350880
Publisher:
Springer US
Publication date:
08/31/1998
Series:
Nonconvex Optimization and Its Applications (closed) Series, #27
Edition description:
1998
Pages:
471
Product dimensions:
6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

Preface. Part I: Generalized Convexity. 1. Are Generalized Derivatives Useful for Generalized Convex Functions? J.-P. Penot. 2. Shastic Programs with Chance Constraints: Generalized Convexity and Approximation Issues; R.J.-B. Wets. 3. Error Bounds for Convex Inequality Systems; A.S. Lewis, Jong-Shi Pang. 4. Applying Generalised Convexity Notions to Jets; A. Eberhard, et al. 5. Quasiconvexity via Two Step Functions; A.M. Rubinov, B.M. Glover. 6. On Limiting Fréchet epsilon-Subdifferentials; A. Jourani, M. Théra. 7. Convexity Space with Respect to a Given Set; L. Blaga, L. Lupsa. 8. A Convexity Condition for the Nonexistence of Some Antiproximinal Sets in the Space of Integrable Functions; A.-M. Precupanu. 9. Characterizations of rho-Convex Functions; M. Castellani, M. Pappalardo. Part II: Generalized Monotonicity. 10. Characterizations of Generalized Convexity and Generalized Monotonicity, a Survey; J.-P. Crouzeix. 11. Quasimonotonicity and Pseudomonotonicity in Variational Inequalities and Equilibrium Problems; N. Hadjisavvas, S. Schaible. 12. On the Scalarization of Pseudoconcavity and Pseudomonotonicity Concepts for Vector Valued Functions; R. Cambini, S. Komlósi. 13. Variational Inequalities and Pseudomonotone Functions: Some Characterizations; R. John. Part III: Optimality Conditions and Duality. 14. Simplified Global Optimality Conditions in Generalized Conjugation Theory; F. Flores-Bazán, J.-E. Martínez-Legaz. 15. Duality in DC Programming; B. Lemaire, M. Volle. 16. Recent Developments in Second Order Necessary Optimality Conditions; A. Cambini, et al. 17. Higher Order Invexity and Duality in Mathematical Programming; B. Mond, J. Zhang. 18. Fenchel Duality in Generalized Fractional Programming; C.R. Bector, et al. Part IV: Vector Optimization. 19. The Notion of Invexity in Vector Optimization: Smooth and Nonsmooth Case; G. Giorgi, A. Guerraggio. 20. Quasiconcavity of Sets and Connectedness of the Efficient Frontier in Ordered Vector Spaces; E. Molho, A. Zaffaroni. 21. Multiobjective Quadratic Problem: Characterization of the Efficient Points; A. Beato-Moreno, et al. 22. Generalized Concavity for Bicriteria Functions; R. Cambini. 23. Generalized Concavity in Multiobjective Programming; A. Cambini, L. Martein.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >