Generative Social Science: Studies in Agent-Based Computational Modeling / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $75.18
Usually ships in 1-2 business days
(Save 16%)
Other sellers (Hardcover)
  • All (7) from $75.18   
  • New (5) from $75.18   
  • Used (2) from $106.75   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$75.18
Seller since 2008

Feedback rating:

(17428)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
Brand New, Perfect Condition, Please allow 4-14 business days for delivery. 100% Money Back Guarantee, Over 1,000,000 customers served.

Ships from: Westminster, MD

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$77.59
Seller since 2008

Feedback rating:

(4438)

Condition: New
New Book. Shipped from UK within 4 to 14 business days. Established seller since 2000.

Ships from: Horcott Rd, Fairford, United Kingdom

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$78.66
Seller since 2007

Feedback rating:

(23278)

Condition: New
BRAND NEW

Ships from: Avenel, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$81.60
Seller since 2009

Feedback rating:

(9991)

Condition: New
New Book. Shipped from US within 4 to 14 business days. Established seller since 2000

Ships from: Secaucus, NJ

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$106.60
Seller since 2009

Feedback rating:

(90)

Condition: New
Hardcover New 0691125473 Special order direct from the distributor.

Ships from: Victoria, Canada

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$106.75
Seller since 2010

Feedback rating:

(180)

Condition: Good
0691125473 USED BOOK in good condition| No supplements| Normal wear to cover, edges, spine, corners, and pages | Writing / highlighting | Inventory stickers | Satisfaction ... guaranteed! Read more Show Less

Ships from: Punta Gorda, FL

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$109.74
Seller since 2008

Feedback rating:

(17428)

Condition: Like New
Brand New, Perfect Condition, Please allow 4-14 business days for delivery. 100% Money Back Guarantee, Over 1,000,000 customers served.

Ships from: Westminster, MD

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

"Joshua Epstein has been a leader in articulating and pursuing the agent-based generative approach to social science. This collection of his papers exemplifies both the depth of his methodological positions and the fruitfulness of agent-based analysis. The power of simple rules of local social interaction in generating explanations of complex social behavior is beautifully illustrated, most notably in the study of population fluctuations in Anasazi societies. I am convinced that agent-based approaches to economics will become a major tool."—Kenneth J. Arrow, Stanford University

"Generative Social Science is an outstanding example of an exciting paradigm shift in the analysis of dynamic social systems. Joshua Epstein is a virtuoso at using simple models to reveal surprising insights about the dynamics of a wide range of phenomena such as epidemics, status hierarchies, civil violence, and even the timing of retirement."—Robert Axelrod, University of Michigan

"Agent-based computational modeling represents an important new interdisciplinary approach to doing social science. Joshua Epstein, a pioneer of this approach, provides in Generative Social Science both a spirited defense of agent-based modeling and a dazzling display of the method's power."—John Duffy, University of Pittsburgh

"Epstein is a central and outstandingly creative figure in the emerging social science literature developed through agent-based simulation studies. Epstein offers an undogmatic, balanced account of his project and methods and shows in what specific ways they can open up whole broad questions that are simply unapproachable with traditional methods. The chapters address a stunningly wide range of problems, and each chapter has a distinctive and stimulating contribution to make."—Duncan K. Foley, New School for Social Research

"Generative Social Science is an important book that should be read by all who have a serious interest in the social sciences."—Peter Hedström, University of Oxford

"The contents are important, and until now have appeared in scattered and sometimes obscure places. The new commentary that the author has added ties these together in a coherent whole illustrating this new approach to the social sciences."—Brian Skyrms, University of California, Irvine

"This book is leading what is likely to be an increasingly important line of thought. The central argument and its illustrative applications present conceptual and methodological innovations that clearly have enormous potential. The writing is concise, accurate, balanced, and entertaining. Readers will be broadened, challenged, provoked, and inspired."—John Steinbruner, University of Maryland

Read More Show Less

Editorial Reviews

Science - Daniel Diermeier
It should be noted that having all these contributions in one place is not only useful but pleasing...Epstein's book is a concise and well articulated defense of agent-based modeling. Generative Social Science is essential reading for anyone seriously interested in the foundations and the practice of agent-based modeling.
JASSS - Rosaria Conte
Epstein's Generative Social Science . . . is to be regarded as a success. It is a highly professional book, comestible also by non-experts without giving up scientific rigour. Probably because the author is fond of its subject matter, and manages to transfer his enthusiasm into the reader, the book may be read all at once, as a narrative. . . . In sum, there are good reasons to expect that the community of simulators will welcome this book with enthusiasm, and that other supporters will be recruited.
American Journal of Sociology - Michael Macy
Epstein's generative manifesto is essential reading for anyone seriously interested in explaining social life.
From the Publisher
"It should be noted that having all these contributions in one place is not only useful but pleasing...Epstein's book is a concise and well articulated defense of agent-based modeling. Generative Social Science is essential reading for anyone seriously interested in the foundations and the practice of agent-based modeling."—Daniel Diermeier, Science

"Epstein's Generative Social Science . . . is to be regarded as a success. It is a highly professional book, comestible also by non-experts without giving up scientific rigour. Probably because the author is fond of its subject matter, and manages to transfer his enthusiasm into the reader, the book may be read all at once, as a narrative. . . . In sum, there are good reasons to expect that the community of simulators will welcome this book with enthusiasm, and that other supporters will be recruited."—Rosaria Conte, JASSS

"Epstein's generative manifesto is essential reading for anyone seriously interested in explaining social life."—Michael Macy, American Journal of Sociology

Science
It should be noted that having all these contributions in one place is not only useful but pleasing...Epstein's book is a concise and well articulated defense of agent-based modeling. Generative Social Science is essential reading for anyone seriously interested in the foundations and the practice of agent-based modeling.
— Daniel Diermeier
JASSS
Epstein's Generative Social Science . . . is to be regarded as a success. It is a highly professional book, comestible also by non-experts without giving up scientific rigour. Probably because the author is fond of its subject matter, and manages to transfer his enthusiasm into the reader, the book may be read all at once, as a narrative. . . . In sum, there are good reasons to expect that the community of simulators will welcome this book with enthusiasm, and that other supporters will be recruited.
— Rosaria Conte
American Journal of Sociology
Epstein's generative manifesto is essential reading for anyone seriously interested in explaining social life.
— Michael Macy
Science
It should be noted that having all these contributions in one place is not only useful but pleasing...Epstein's book is a concise and well articulated defense of agent-based modeling. Generative Social Science is essential reading for anyone seriously interested in the foundations and the practice of agent-based modeling.
— Daniel Diermeier
JASSS
Epstein's Generative Social Science . . . is to be regarded as a success. It is a highly professional book, comestible also by non-experts without giving up scientific rigour. Probably because the author is fond of its subject matter, and manages to transfer his enthusiasm into the reader, the book may be read all at once, as a narrative. . . . In sum, there are good reasons to expect that the community of simulators will welcome this book with enthusiasm, and that other supporters will be recruited.
— Rosaria Conte
Read More Show Less

Product Details

  • ISBN-13: 9780691125473
  • Publisher: Princeton University Press
  • Publication date: 1/8/2007
  • Series: Princeton Studies in Complexity Series
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 352
  • Product dimensions: 6.50 (w) x 9.60 (h) x 1.16 (d)

Meet the Author

Joshua M. Epstein is a Senior Fellow in Economic Studies at the Brookings Institution, a founding member of the Brookings-Johns Hopkins Center on Social and Economic Dynamics, and a member of the External Faculty of the Santa Fe Institute. He is the coauthor of "Growing Artificial Societies: Social Science from the Bottom Up" and the author of "Nonlinear Dynamics, Mathematical Biology, and Social Science".

Read More Show Less

Read an Excerpt

Generative Social Science

Studies in Agent-Based Computational Modeling
By Joshua M. Epstein

Princeton University Press

Copyright © 2006 Princeton University Press
All right reserved.

ISBN: 978-0-691-12547-3


Chapter One

AGENT-BASED COMPUTATIONAL MODELS AND GENERATIVE SOCIAL SCIENCE

JOSHUA M. EPSTEIN

This article argues that the agent-based computational model permitsa distinctive approach to social science for which the term "generative" is suitable. In defending this terminology, features distinguishing the approach from both "inductive" and "deductive" science are given. Then, the following specific contributions to social science are discussed: The agent-based computational model is a new tool for empirical research. It offers a natural environment for the study of connectionist phenomena in social science. Agent-based modeling provides a powerful way to address certain enduring-and especially interdisciplinary-questions. It allows one to subject certain core theories-such as neoclassical microeconomics-to important types of stress (e.g., the effect of evolving preferences). It permits one to study how rules of individual behavior give rise-or "map up"-to macroscopic regularities and organizations. In turn, one can employ laboratory behavioral research findings to select among competing agent-based ("bottom up") models. The agent-based approach maywell have the important effect of decoupling individual rationality from macroscopic equilibrium and of separating decision science from social science more generally. Agent-based modeling offers powerful new forms of hybrid theoretical-computational work; these are particularly relevant to the study of non-equilibrium systems. The agent-based approach invites the interpretation of society as a distributed computational device, and in turn the interpretation of social dynamics as a type of computation. This interpretation raises important foundational issues in social science-some related to intractability, and some to undecidability proper. Finally, since "emergence" figures prominently in this literature, I take up the connection between agent-based modeling and classical emergentism, criticizing the latter and arguing that the two are incompatible.

Generative Social Science

The agent-based computational model-or artificial society-is a new scientific instrument. It can powerfully advance a distinctive approach to social science, one for which the term "generative" seems appropriate. I will discuss this term more fully below, but in a strong form, the central ideais this: To the generativist, explaining the emergence of macroscopic societal regularities, such as norms or price equilibria, requires that one answer the following question:

The Generativist's Question

The agent-based computational model is well-suited to the study of this question since the following features are characteristic:

HETEROGENEITY

Representative agent methods-common in macroeconomics-are not used in agent-based models (see Kirman 1992). Nor are agents aggregated into a few homogeneous pools. Rather, agent populations are heterogeneous; individuals may differ in myriad ways-genetically, culturally, by social network, by preferences-all of which may change or adapt endogenously over time.

AUTONOMY

There is no central, or "top-down," control over individual behavior in agent-based models. Of course, there will generally be feedback from macrostructures to microstructures, as where newborn agents are conditioned by social norms or institutions that have taken shape endogenously through earlier agent interactions. In this sense, micro and macro will typically co-evolve. But as a matter of model specification, no central controllers or other higher authorities are posited ab initio.

EXPLICIT SPACE

Events typically transpire on an explicit space, which may be a landscape of renewable resources, as in Epstein and Axtell (1996), an n-dimensional lattice, or a dynamic social network. The main desideratum is that the notion of "local" be well posed.

LOCAL INTERACTIONS

Typically, agents interact with neighbors in this space (and perhaps with environmental sites in their vicinity). Uniform mixing is generically not the rule. It is worth noting that although this next feature is logically distinct from generativity, many computational agent-based models also assume:

BOUNDED RATIONALITY

There are two components of this: bounded information and bounded computing power. Agents do not have global information, and they do not have infinite computational power. Typically, they make use of simple rules based on local information (see Simon 1982 and Rubinstein 1998).

The agent-based model, then, is especially powerful in representing spatially distributed systems of heterogeneous autonomous actors with bounded information and computing capacity who interact locally.

The Generativist's Experiment

In turn, given some macroscopic explanandum-a regularity to be explained-the canonical agent-based experiment is as follows:

Concisely, is the way generative social scientists answer. In fact, this type of experiment is not new and, in principle, it does not necessarily involve computers. However, recent advances in computing, and the advent of large-scale agent-based computational modeling, permit a generative research program to be pursued with unprecedented scope and vigor.

Examples

A range of important social phenomena have been generated in agent-based computational models, including: right-skewed wealth distributions (Epstein and Axtell 1996), right-skewed firm size and growth rate distributions (Axtell 1999), price distributions (Bak et al. 1993), spatial settlement patterns (Dean et al. 1999), economic classes (Axtell et al. 2001), price equilibria in decentralized markets(Albin and Foley 1990; Epstein and Axtell 1996), trade networks (Tesfatsion 1995; Epstein and Axtell 1996), spatial unemployment patterns(Topa 1997), excess volatility in returns to capital (Bullard and Duffy 1998), military tactics (Ilachinski 1997), organizational behaviors (Prietula, Carley, and Gasser 1998), epidemics (Epstein and Axtell 1996), traffic congestion patterns (Nagel and Rasmussen 1994), cultural patterns (Axelrod 1997c; Epstein and Axtell 1996), alliances (Axelrod and Bennett 1993; Cederman 1997), stock market price time series (Arthur et al. 1997), voting behaviors (Kollman, Miller, and Page 1992), cooperation in spatial games (Lindgren and Nordahl 1994; Epstein 1998; Huberman and Glance 1993; Nowak and May 1992; Miller 1996), and demographic histories (Dean et al. 1999). These examples manifest a wide range of (often implicit) objectives and levels of quantitative testing.

Before discussing specific models, it will be useful to identify certain changes in perspective that this approach may impose on the social sciences. Perhaps the most fundamental of these changes involves explanation itself.

Explanation and Generative Sufficiency

Agent-based models provide computational demonstrations that a given microspecification is in fact sufficient to generate a macrostructure of interest. Agent-based modelers may use statistics to gauge the generative sufficiency of a given microspecification-to test the agreement between real-world and generated macro structures. (On levels of agreement, see Axtell and Epstein 1994.) A good fit demonstrates that the target macrostructure-the explanandum-be it a wealth distribution, segregation pattern, price equilibrium, norm, or some other macrostructure, is effectively attainable under repeated application of agent-interaction rules: It is effectively computable by agent society. (The view of society as a distributed computational device is developed more fully below.) Indeed, this demonstration is taken as a necessary condition for explanation itself. To the generativist-concerned with formation dynamics-it does not suffice to establish that, if deposited in some macroconfiguration, the system will stay there. Rather, the generativist wants an account of the configuration's attainment by a decentralized system of heterogeneous autonomous agents. Thus, the motto of generative social science, if you will, is: If you didn't grow it, you didn't explain its emergence. Or, in the notation of first-order logic:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1)

It must be emphasized that the motto applies only to that domain of problems involving the formation or emergence of macroscopic regularities. Proving that some configuration is a Nash equilibrium, for example, arguably does explain its persistence, but does not account for its attainment. Regarding the converse of expression (1), if a microspecification, m, generates a macrostructure of interest, then m is a candidate explanation. But it may be a relatively weak candidate; merely generating a macrostructure does not necessarily explain its formation particularly well. Perhaps Barnsley's fern (Barnsley 1988) is a good mathematical example. The limit object indeed looks very much like a black spleenwort fern. But-under iteration of a certain affine function system-it assembles itself in a completely unbiological way, with the tip first, then a few outer branches, eventually a chunk of root, back to the tip, and so forth-not connectedly from the bottom up (now speaking literally).

It may happen that there are distinct microspecifications having equivalent generative power (their generated macrostructures fit the macro-data equally well). Then, as in any other science, one must do more work, figuring out which of the microspecifications is most tenable empirically. In the context of social science, this may dictate that competing microspecifications with equal generative power be adjudicated experimentally-perhaps in the psychology lab.

In summary, if the microspecification m does not generate the macrostructure x, then m is not a candidate explanation. If m does generate x, it is a candidate. If there is more than one candidate, further work is required at the micro-level to determine which m is the most tenable explanation empirically. For most of the social sciences, it must be said, the problem of multiple competing generative accounts would be an embarrassment of riches. The immediate agenda is to produce generative accounts per se. The principal instrument in this research program is the agent-based computational model. And as the earlier examples suggest, the effort is underway.

This agenda imposes a constructivist (intuitionistic) philosophy on social science. In the air is a foundational debate on the nature of explanation reminiscent of the controversy on foundations of mathematics in the 1920s-30s. Central to that debate was the intuitionists' rejection of nonconstructive existence proofs (see below): their insistence that meaningful "existence in mathematics coincides with constructibility" (FraenkelandBar-Hillel 1958, 207). While the specifics are of course different here-and I am not discussing intuitionism in mathematics proper-this is the impulse, the spirit, of the agent-based modelers: If the distributed interactions of heterogeneous agents can't generate it, then we haven't explained its emergence.

Generative versus Inductive and Deductive

From an epistemological standpoint, generative social science, while empirical (see below), is not inductive, at least as that term is typically used in the social sciences (e.g., as where one assembles macroeconomic data and estimates aggregate relations econometrically). (For a nice introduction to general problems of induction, beginning with Hume, see Chalmers 1982. On inductive logic, see Skyrms 1986. For Bayesians and their critics, see, respectively, Howson and Urbach 1993 and Glymour 1980.)

The relation of generative social science to deduction is more subtle. The connection is of particular interest because there is an intellectual tradition in which we account an observation as explained precisely when we can deduce the proposition expressing that observation from other, more general, propositions. For example, we explain Galileo's leaning Tower of Pisa observation (that heavy and light objects dropped from the same height hit the ground simultaneously) by strictly deducing, from Newton's Second Law and the Law of Universal Gravitation, the following proposition: "The acceleration of a freely falling body near the surface of the earth is independent of its mass." In the present connection, we seek to explain macroscopic social phenomena. And we are requiring that they be generated in an agent-based computational model. Surprisingly, in that event, we can legitimately claim that they are strictly deducible. In particular, if one accepts the Church-Turing thesis, then every computation-including every agent-based computation-can be executed by a suitable register machine (Hodel 1995; Jeffrey 1991). It is then a theorem of logic and computability that every program can be simulated by a first-order language. In particular, with N denoting the natural numbers:

Theorem. Let P be a program. There is a first-order language L, and for each a N a sentence C(a) of L, such that for all a N, the P-computation with input a halts the sentence C(a) is logically valid.

This theorem allows one to use the recursive unsolvability of the halting problem to establish the recursive unsolvability of the validity problem in first-order logic (see Kleene 1967). Explicit constructions of the correspondence between register machine programs and the associated logical arguments are laid out in detail by Jeffrey (1991) and Hodel (1995). The point here is that for every computation, there is a corresponding logical deduction. (And this holds even when the computation involves "stochastic" features, since, on a computer, these are produced by deterministic pseudo-random number generation (see Knuth 1969). Even if one conducts a statistical analysis over some distribution of runs-using different random seeds-each run is itself a deduction. Indeed, it would be quite legitimate to speak, in that case, of a distribution of theorems.) In any case, from a technical standpoint, generative implies deductive, a point that will loom large later, when we argue that agent-based modeling and classical emergentism are incompatible.

Importantly, however, the converse does not apply: Not all deductive argument has the constructive character of agent-based modeling. Nonconstructive existence proofs are obvious examples. These work as follows: Suppose we wish to prove the existence of an x with some property (e.g., that it is an equilibrium). We take as an axiom the so-called Law of the Excluded Middle that (i) either x exists or x does not exist. Next, we (ii) assume that x does not exist, and (iii) derive a contradiction. From this we conclude that (iv) x must exist. But we have failed to exhibit x, or indicate any algorithm that would generate it, patently violating the generative motto (1). The same holds for many nonconstructive proofs in mathematical economics and game theory (e.g., deductions establishing the existence of equilibria using fixed-point theorems). See Lewis 1985. In summary, then, generative implies deductive, but the converse is not true.

Given the differences between agent-based modeling and both inductive and deductive social science, a distinguishing term seems appropriate. The choice of "generative" was inspired by Chomsky's(1965) early usage: Syntactic theory seeks minimal rule systems that are sufficient to generate the structures of interest, grammatical constructions among them. The generated structures of interest here are, of course, social.

Now, at the outset, I claimed that the agent-based computational model was a scientific instrument. A fair question, then, is whether agent-based computational modeling offers a powerful new way to do empirical research. I will argue that it does. Interestingly, one of the early efforts involves the seemingly remote fields of archaeology and agent-based computation.

(Continues...)



Excerpted from Generative Social Science by Joshua M. Epstein Copyright © 2006 by Princeton University Press. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents

Introduction xi

Prelude to Chapter 1: The Generativist Manifesto 1
Chapter 1: Agent-Based Computational Models and Generative Social Science by Joshua M. Epstein 4

Prelude to Chapter 2: Confession of a Wandering Bark 47
Chapter 2: Remarks on the Foundations of Agent-Based Generative Social Science by Joshua M. Epstein 50

Prelude to Chapter 3: Equilibrium, Explanation, and Gauss's Tombstone 72
Chapter 3: Non-Explanatory Equilibria: An Extremely Simple Game with (Mostly) Unattainable Fixed Points by Joshua M. Epstein and Ross A. Hammond 75
Appendix to Chapter 3: Large Effect of a Subtle Rule Change 86

Prelude to Chapters 4-6: Generating Civilizations: The 1050 Project and the Artificial Anasazi Model 88
Chapter 4: Understanding Anasazi Culture Change through Agent-Based Modeling Jeffrey S. Dean, George J. Gumerman, Joshua M. Epstein, Robert L. Axtell, Alan C. Swedlund, Miles T. Parker, and Stephen McCarroll 90

Chapter 5: Population Growth and Collapse in a Multiagent Model of the Kayenta Anasazi in Long House Valley by Robert L. Axtell, Joshua M. Epstein, Jeffrey S. Dean, George J. Gumerman, Alan C. Swedlund, Jason Harburger, Shubha Chakravarty, Ross Hammond, Jon Parker, and Miles Parker 117

Chapter 6: The Evolution of Social Behavior in the Prehistoric American Southwest by George J. Gumerman, Alan C. Swedlund, Jeffrey S. Dean, and Joshua M. Epstein 130

Prelude to Chapter 7: Generating Patterns in the Timing of Retirement 144
Chapter 7: Coordination in Transient Social Networks: An Agent-Based Computational Model of the Timing of Retirement by Robert L. Axtell and Joshua M. Epstein 146

Prelude to Chapter 8: Generating Classes without Conquest 175
Chapter 8: The Emergence of Classes in a Multi-Agent Bargaining Model by Robert L. Axtell, Joshua M. Epstein, and H. Peyton Young 177

Prelude to Chapter 9: Generating Zones of Cooperation in the Prisoner's Dilemma Game 196
Chapter 9: Zones of Cooperation in Demographic Prisoner's Dilemma by Joshua M. Epstein 199
Appendix to Chapter 9: Generating Norm Maps in the Demographic Coordination Game 222

Prelude to Chapter 10: Generating Thoughtless Conformity to Norms 225
Chapter 10: Learning to be Thoughtless: Social Norms and Individual Computation by Joshua M. Epstein 228

Prelude to Chapter 11: Generating Patterns of Spontaneous Civil Violence 245
Chapter 11: Modeling Civil Violence: An Agent-Based Computational Approach by Joshua M. Epstein 247

Prelude to Chapter 12: Generating Epidemic Dynamics 271
Chapter 12: Toward a Containment Strategy for Smallpox Bioterror: An Individual-Based Computational Approach by Joshua M. Epstein, Derek A.T. Cummings, Shubha Chakravarty, Ramesh M. Singha, and Donald S. Burke 277

Prelude to Chapter 13: Generating Optimal Organizations 307
Chapter 13: Growing Adaptive Organizations: An Agent-Based Computational Approach by Joshua M. Epstein 309

Coda 345
Index 349

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)