Geometric Algorithms and Combinatorial Optimization

Overview

This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the ...
See more details below
Paperback (2nd ed. 1993. Softcover reprint of the original 2nd ed. 1993)
$122.61
BN.com price
(Save 4%)$129.00 List Price
Other sellers (Paperback)
  • All (6) from $79.70   
  • New (4) from $79.70   
  • Used (2) from $154.10   
Sending request ...

Overview

This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. The first edition of this book was received enthusiastically by the community of discrete mathematicians, combinatorial optimizers, operations researchers, and computer scientists. To quote just from a few reviews: "The book is written in a very grasping way, legible both for people who are interested in the most important results and for people who are interested in technical details and proofs." #manuscripta geodaetica#1
Read More Show Less

Product Details

  • ISBN-13: 9783642782428
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 12/21/2011
  • Series: Algorithms and Combinatorics Series , #2
  • Edition description: 2nd ed. 1993. Softcover reprint of the original 2nd ed. 1993
  • Edition number: 2
  • Pages: 362
  • Product dimensions: 6.70 (w) x 9.50 (h) x 0.80 (d)

Table of Contents

0. Mathematical Preliminaries.- 0.1 Linear Algebra and Linear Programming.- Basic Notation.- Hulls, Independence, Dimension.- Eigenvalues, Positive Definite Matrices.- Vector Norms, Balls.- Matrix Norms.- Some Inequalities.- Polyhedra, Inequality Systems.- Linear (Diophantine) Equations and Inequalities.- Linear Programming and Duality.- 0.2 Graph Theory.- Graphs.- Digraphs.- Walks, Paths, Circuits, Trees.- 1. Complexity, Oracles, and Numerical Computation.- 1.1 Complexity Theory: P and NP.- Problems.- Algorithms and Turing Machines.- Encoding.- Time and Space Complexity.- Decision Problems: The Classes P and NP.- 1.2 Oracles.- The Running Time of Oracle Algorithms.- Transformation and Reduction.- NP-Completeness and Related Notion.- 1.3 Approximation and Computation of Numbers.- Encoding Length of Numbers.- Polynomial and Strongly Polynomial Computations.- Polynomial Time Approximation of Real Numbers.- 1.4 Pivoting and Related Procedures.- Gaussian Elimination.- Gram-Schmidt Orthogonalization.- The Simplex Method.- Computation of the Hermite Normal Form.- 2. Algorithmic Aspects of Convex Sets: Formulation of the Problems.- 2.1 Basic Algorithmic Problems for Convex Sets.- 2.2 Nondeterministic Decision Problems for Convex Sets.- 3. The Ellipsoid Method.- 3.1 Geometric Background and an Informal Description.- Properties of Ellipsoids.- Description of the Basic Ellipsoid Method.- Proofs of Some Lemmas.- Implementation Problems and Polynomiality.- Some Examples.- 3.2 The Central-Cut Ellipsoid Method.- 3.3 The Shallow-Cut Ellipsoid Method.- 4. Algorithms for Convex Bodies.- 4.1 Summary of Results.- 4.2 Optimization from Separation.- 4.3 Optimization from Membership.- 4.4 Equivalence of the Basic Problems.- 4.5 Some Negative Results.- 4.6 Further Algorithmic Problems for Convex Bodies.- 4.7 Operations on Convex Bodies.- The Sum.- The Convex Hull of the Union.- The Intersection.- Polars, Blockers, Antiblockers.- 5. Diophantine Approximation and Basis Reduction.- 5.1 Continued Fractions.- 5.2 Simultaneous Diophantine Approximation: Formulation of the Problems.- 5.3 Basis Reduction in Lattices.- 5.4 More on Lattice Algorithms.- 6. Rational Polyhedra.- 6.1 Optimization over Polyhedra: A Preview.- 6.2 Complexity of Rational Polyhedra.- 6.3 Weak and Strong Problems.- 6.4 Equivalence of Strong Optimization and Separation.- 6.5 Further Problems for Polyhedra.- 6.6 Strongly Polynomial Algorithms.- 6.7 Integer Programming in Bounded Dimension.- 7. Combinatorial Optimization: Some Basic Examples.- 7.1 Flows and Cuts.- 7.2 Arborescences.- 7.3 Matching.- 7.4 Edge Coloring.- 7.5 Matroids.- 7.6 Subset Sums.- 7.7 Concluding Remarks.- 8. Combinatorial Optimization: A Tour d’Horizon.- 8.1 Blocking Hypergraphs and Polyhedra.- 8.2 Problems on Bipartite Graphs.- 8.3 Flows, Paths, Chains, and Cuts.- 8.4 Trees, Branchings, and Rooted and Directed Cuts.- Arborescences and Rooted Cuts.- Trees and Cuts in Undirected Graphs.- Dicuts and Dijoins.- 8.5 Matchings, Odd Cuts, and Generalizations.- Matching.- b-Matching.- T-Joins and T-Cuts.- Chinese Postmen and Traveling Salesmen.- 8.6 Multicommodity Flows.- 9. Stable Sets in Graphs.- 9.1 Odd Circuit Constraints and t-Perfect Graphs.- 9.2 Clique Constraints and Perfect Graphs.- Antiblockers of Hypergraphs.- 9.3 Orthonormal Representations.- 9.4 Coloring Perfect Graphs.- 9.5 More Algorithmic Results on Stable Sets.- 10. Submodular Functions.- 10.1 Submodular Functions and Polymatroids.- 10.2 Algorithms for Polymatroids and Submodular Functions.- Packing Bases of a Matroid.- 10.3 Submodular Functions on Lattice, Intersecting, and Crossing Families.- 10.4 Odd Submodular Function Minimization and Extensions.- References.- Notation Index.- Author Index.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)