Geometric Crystallography: An Axiomatic Introduction to Crystallography / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $78.35
Usually ships in 1-2 business days
(Save 65%)
Other sellers (Hardcover)
  • All (8) from $78.35   
  • New (6) from $162.62   
  • Used (2) from $78.35   

Editorial Reviews

From the Publisher
'The book will be welcomed by crystallographers who want to improve their knowledge of theoretical and mathematical crystallography.' Acta Crystallographica, 1987
Read More Show Less

Product Details

  • ISBN-13: 9789027723390
  • Publisher: Springer Netherlands
  • Publication date: 10/31/1986
  • Edition description: 1986
  • Edition number: 1
  • Pages: 274
  • Product dimensions: 6.64 (w) x 9.54 (h) x 0.85 (d)

Table of Contents

1. Basic definitions.- 1.1. Axioms of geometric crystallography.- 1.2. Euclidean vector space.- 1.3. Rigid motions.- 1.4. Symmetry operations.- 1.5. Classifications.- 1.6. Historical remarks.- 2. Dirichlet domains.- 2.1. Definition of the Dirichlet domain.- 2.2. Some properties of Dirichlet domains.- 2.3. Dirichlet domain partition.- 2.4. A practical method to calculate.- 3. Lattices.- 3.1. The theorem of Bieberbach.- 3.2. Lattice bases.- 3.3. Orthogonal basis.- 3.4. Lattice planes.- 3.5. Dirichlet parallelotopes.- 4. Reduction of quadratic forms.- 4.1. Definition of the—-reduced form.- 4.2. The reduction scheme of Lagrange.- 4.3. The reduction scheme of Seeber.- 4.4. The reduction scheme of Selling.- 4.5. The reduction scheme of Minkowski.- 4.6. Historical remarks.- 5. Crysta1lographic symmetry operations.- 5.1. Defini11ons.- 5.2. Rotations in E2.- 5.3. Rotations in En.- 5.4. Symmetry support.- 5.5. General symmetry operations in En.- 6. Crvstallographic point groups.- 6.1. Definitions.- 6.2. Point groups in E2.- 6.3. Point groups in E3.- 6.4. Point groups in En.- 6.5. Root classes.- 6.6. Isomorphsm types of point groups.- 6.7. Historical remarks.- 7. Lattice symmetries.- 7.1. Definitions.- 7.2. Bravais point groups.- 7.3. Bravais types of lattices.- 7.4. Arithmetic crystal classes.- 7.5. Crystal forms.- 7.6. Historical remarks.- 8. Space groups.- 8.1. Definitions.- 8.2. Derivation of space groups.- 8.3. Normalizers of symmetry groups.- 8.4. Subgroups of space groups.- 8.5. Crystallographic orbits.- 8.6. Colour groups and colourings.- 8.7. Subperiodic groups.- 8.8. Historical remarks.- 9. Space partitions.- 9.1. Definitions.- 9.2. Dirichlet domain partitions.- 9.3. Parallelotopes.- 9.4. The regularity condition.- 9.5. Dissections of polytopes.- 9.6. Historical remarks.- 10. Packings of balls.- 10.1. Definitions.- 10.2. Packings of disks into E2.- 10.3. Packings of balls into E3.- 10.4. Lattice packings of balls in En.- 10.5. Historical remarks.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)