Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns / Edition 1

Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns / Edition 1

by Michael Kirby
     
 

An analysis of large data sets from an empirical and geometric viewpoint

Data reduction is a rapidly emerging field with broad applications in essentially all fields where large data sets are collected and analyzed. Geometric Data Analysis is the first textbook to focus on the geometric approach to this problem of developing and distinguishing subspace and

See more details below

Overview

An analysis of large data sets from an empirical and geometric viewpoint

Data reduction is a rapidly emerging field with broad applications in essentially all fields where large data sets are collected and analyzed. Geometric Data Analysis is the first textbook to focus on the geometric approach to this problem of developing and distinguishing subspace and submanifold techniques for low-dimensional data representation. Understanding the geometrical nature of the data under investigation is presented as the key to identifying a proper reduction technique.

Focusing on the construction of dimensionality-reducing mappings to reveal important geometrical structure in the data, the sequence of chapters is carefully constructed to guide the reader from the beginnings of the subject to areas of current research activity. A detailed, and essentially self-contained, presentation of the mathematical prerequisites is included to aid readers from a broad variety of backgrounds. Other topics discussed in Geometric Data Analysis include:
* The Karhunen-Loeve procedure for scalar and vector fields with extensions to missing data, noisy data, and data with symmetry
* Nonlinear methods including radial basis functions (RBFs) and backpropa-gation neural networks
* Wavelets and Fourier analysis as analytical methods for data reduction
* Expansive discussion of recent research including the Whitney reduction network and adaptive bases codeveloped by the author
* And much more

The methods are developed within the context of many real-world applications involving massive data sets, including those generated by digital imaging systems and computer simulations of physical phenomena. Empirically based representations are shown to facilitate their investigation and yield insights that would otherwise elude conventional analytical tools.

Read More

Product Details

ISBN-13:
9780471239291
Publisher:
Wiley
Publication date:
01/12/2001
Edition description:
New Edition
Pages:
384
Sales rank:
1,306,930
Product dimensions:
6.46(w) x 9.65(h) x 0.91(d)

Table of Contents

Preface.

Acknowledgments.

INTRODUCTION.

Pattern Analysis as Data Reduction.

Vector Spaces and Linear Transformations.

OPTIMAL ORTHOGONAL PATTERN REPRESENTATIONS.

The Karhunen-Loève Expansion.

Additional Theory, Algorithms and Applications.

TIME, FREQUENCY AND SCALE ANALYSIS.

Fourier Analysis.

Wavelet Expansions.

ADAPTIVE NONLINEAR MAPPINGS.

Radial Basis Functions.

Neural Networks.

Nonlinear Reduction Architectures.

Appendix A Mathemetical Preliminaries.

References.

Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >