Geometric Discrepancy: An Illustrated Guide / Edition 1

Geometric Discrepancy: An Illustrated Guide / Edition 1

by Jiri Matousek
     
 

What is the "most uniform" way of distributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? Such questions are treated in geometric discrepancy theory. The book is an accessible and lively introduction to this area, with numerous exercises and illustrations. In separate, more specialized parts, it also

See more details below

Overview

What is the "most uniform" way of distributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? Such questions are treated in geometric discrepancy theory. The book is an accessible and lively introduction to this area, with numerous exercises and illustrations. In separate, more specialized parts, it also provides a comprehensive guide to recent research. Including a wide variety of mathematical techniques (from harmonic analysis, combinatorics, algebra etc.) in action on non-trivial examples, the book is suitable for a "special topic" course for early graduates in mathematics and computer science. Besides professional mathematicians, it will be of interest to specialists in fields where a large collection of objects should be "uniformly" represented by a smaller sample (such as high-dimensional numerical integration in computational physics or financial mathematics, efficient divide-and-conquer algorithms in computer science, etc.).

From the reviews: "...The numerous illustrations are well placed and instructive. The clear and elegant exposition conveys a wealth of intuitive insights into the techniques utilized. Each section usually consists of text, historical remarks and references for the specialist, and exercises. Hints are provided for the more difficult exercises, with the exercise-hint format permitting inclusion of more results than otherwise would be possible in a book of this size..."

Allen D. Rogers, Mathematical Reviews Clippings (2001)

Read More

Product Details

ISBN-13:
9783540655282
Publisher:
Springer Berlin Heidelberg
Publication date:
06/22/1999
Series:
Algorithms and Combinatorics Series, #18
Edition description:
1999
Pages:
289
Product dimensions:
9.21(w) x 6.14(h) x 0.75(d)

Table of Contents

1. Introduction 1.1 Discrepancy for Rectangles and Uniform Distribution 1.2 Geometric Discrepancy in a More General Setting 1.3 Combinatorial Discrepancy 1.4 On Applications and Connections 2. Low-Discrepancy Sets for Axis-Parallel Boxes 2.1 Sets with Good Worst-Case Discrepancy 2.2 Sets with Good Average Discrepancy 2.3 More Constructions: b-ary Nets 2.4 Scrambled Nets and Their Average Discrepancy 2.5 More Constructions: Lattice Sets 3. Upper Bounds in the Lebesgue-Measure Setting 3.1 Circular Discs: a Probabilistic Construction 3.2 A Surprise for the L 1-Discrepancy for Halfplanes 4. Combinatorial Discrepancy 4.1 Basic Upper Bounds for General Set Systems 4.2 Matrices, Lower Bounds, and Eigenvalues 4.3 Linear Discrepancy and More Lower Bounds 4.4 On Set Systems with Very Small Discrepancy 4.5 The Partial Coloring Method 4.6 The Entropy Method 5. VC-Dimension and Discrepancy 5.1 Discrepancy and Shatter Functions 5.2 Set Systems of Bounded VC-Dimension 5.3 Packing Lemma 5.4 Matchings with Low Crossing Number 5.5 Primal Shatter Function and Partial Colorings 6. Lower Bounds 6.1 Axis-Parallel Rectangles: L 2-Discrepancy 6.2 Axis-Parallel Rectangles: the Tight Bound 6.3 A Reduction: Squares from Rectangles 6.4 Halfplanes: the Combinatorial Discrepancy 6.5 Combinatorial Discrepancy for Halfplanes Revisited 6.6 Halfplanes: the Lebesgue-Measure Discrepancy 6.7 A Glimpse of Positive Definite Functions 7. More Lower Bounds and the Fourier Transform 7.1 Arbitrarily Rotated Squares 7.2 Axis-Parallel Cubes 7.3 An Excursion to Euclidean Ramsey Theory A. Tables of Selected Discrepancy Bounds Bibliography Index Hints

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >