Geometric Folding Algorithms: Linkages, Origami, Polyhedra

Geometric Folding Algorithms: Linkages, Origami, Polyhedra

by Erik D. Demaine, Joseph O'Rourke
     
 

View All Available Formats & Editions

ISBN-10: 0521857570

ISBN-13: 9780521857574

Pub. Date: 07/31/2007

Publisher: Cambridge University Press

How can linkages, pieces of paper, and polyhedra be folded? The authors present hundreds of results and over 60 unsolved ‘open problems’ in this comprehensive look at the mathematics of folding, with an emphasis on algorithmic or computational aspects. Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s, but

Overview

How can linkages, pieces of paper, and polyhedra be folded? The authors present hundreds of results and over 60 unsolved ‘open problems’ in this comprehensive look at the mathematics of folding, with an emphasis on algorithmic or computational aspects. Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s, but have only recently been studied in the mathematical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. A proof shows that it is possible to design a series of jointed bars moving only in a flat plane that can sign a name or trace any other algebraic curve. One remarkable algorithm shows you can fold any straight-line drawing on paper so that the complete drawing can be cut out with one straight scissors cut. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers.

Product Details

ISBN-13:
9780521857574
Publisher:
Cambridge University Press
Publication date:
07/31/2007
Edition description:
New Edition
Pages:
496
Sales rank:
1,247,225
Product dimensions:
7.20(w) x 10.24(h) x 1.18(d)

Table of Contents

Introduction; Part I. Linkages: 1. Problem classification and examples; 2. Upper and lower bounds; 3. Planar linkage mechanisms; 4. Rigid frameworks; 5. Reconfiguration of chains; 6. Locked chains; 7. Interlocked chains; 8. Joint-constrained motion; 9. Protein folding; Part II. Paper: 10. Introduction; 11. Foundations; 12. Simple crease patterns; 13. General crease patterns; 14. Map folding; 15. Silhouettes and gift wrapping; 16. The tree method; 17. One complete straight cut; 18. Flattening polyhedra; 19. Geometric constructibility; 20. Rigid origami and curved creases; Part III. Polyhedra: 21. Introduction and overview; 22. Edge unfolding of polyhedra; 23. Reconstruction of polyhedra; 24. Shortest paths and geodesics; 25. Folding polygons to polyhedra; 26. Higher dimensions.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >