Geometric Galois Actions, Volume 2: The Inverse Galois Problem, Moduli Spaces, and Mapping Class Groups

Geometric Galois Actions, Volume 2: The Inverse Galois Problem, Moduli Spaces, and Mapping Class Groups

by Leila Schneps
     
 

ISBN-10: 0521596416

ISBN-13: 9780521596411

Pub. Date: 08/07/1997

Publisher: Cambridge University Press

This book surveys progress in the domains described in the hitherto unpublished manuscript "Esquisse d'un Programme" (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest among workers in algebraic geometry, number theory, algebra and topology.  See more details below

Overview

This book surveys progress in the domains described in the hitherto unpublished manuscript "Esquisse d'un Programme" (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest among workers in algebraic geometry, number theory, algebra and topology.

Product Details

ISBN-13:
9780521596411
Publisher:
Cambridge University Press
Publication date:
08/07/1997
Series:
London Mathematical Society Lecture Note Series, #243
Pages:
360
Product dimensions:
5.98(w) x 8.98(h) x 0.79(d)

Related Subjects

Table of Contents

List of participants; Abstracts of the talks; Part I. Introduction: Part II. Abstracts: Part III. Dessins d'enfants: 1. Unicellular cartography and Galois orbits of plane trees N. Adrianov, G. Shabat; 2. Galois groups, monodromy groups and cartographical groups G. Jones, M. Streit; 3. Drawings, triangle groups and algebraic curves W. Harvey; 4. Permutation techniques for coset representations of modular subgroups T. Hsu; 5. On groups acting on dessin-labeled objects V. Shabat; 6. Dessins d'enfants en genre 1 L. Zapponi; Part IV. Inverse Galois Problem: 7. The regular inverse Galois problem over large fields P. Debes, B. Deschamps; 8. The symplectic braid group and Galois realizations K. Strambach, H. Volklein; 9. Obstructed components of A5 modular towers M. Fried, Y. Kopeliovic; Part V. Galois Actions And Mapping Class Groups: 10. Monodromy of iterated integrals (non-Abelian unipotent periods) Z. Wojtkowiak; 11. Deformation of singularities and mapping class groups M. Matsumoto; Part VI. Universal Teichmüller Theory: 12. The universal Ptolemy group and its completions R. Penner; 13. Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée M. Imbert, V. Sergiescu; 14. The universal Ptolemy–Teichmuller groupoid P. Lochak, L. Schneps.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >