The main focus of the book is to show that the three gauge forces are defined in the quantum domain, while Einstein's gravitation remains an essentially classical interaction. However, the main implication of Einstein's reasoning is built into the Einstein-Hilbert action principle, which is independent of the source of gravitation. As such, the Einstein-Hilbert principle by itself does not depend on any specific source, leading to a gravitational field that is far more general than that defined by General Relativity, while retaining all its geometrical characteristics. This makes a key difference in the sense that all four fundamental interactions may now be defined in the same quantum domain. Einstein's classical theory of General Relativity becomes a particular case of the quantum gravitational field defined by the Einstein-Hilbert action.
At the quantum scale, the direct sum of the resulting four geometries produces an 11-dimensional Riemannian geometry whose curvature defines a new quantum cosmology without hierarchies, so that all fundamental interactions contribute effectively to the evolution of the universe, a result that is of interest to high energy physicists, cosmologists, mathematicians, philosophers and all those who seek a plausible explanation for the physical world.
The main focus of the book is to show that the three gauge forces are defined in the quantum domain, while Einstein's gravitation remains an essentially classical interaction. However, the main implication of Einstein's reasoning is built into the Einstein-Hilbert action principle, which is independent of the source of gravitation. As such, the Einstein-Hilbert principle by itself does not depend on any specific source, leading to a gravitational field that is far more general than that defined by General Relativity, while retaining all its geometrical characteristics. This makes a key difference in the sense that all four fundamental interactions may now be defined in the same quantum domain. Einstein's classical theory of General Relativity becomes a particular case of the quantum gravitational field defined by the Einstein-Hilbert action.
At the quantum scale, the direct sum of the resulting four geometries produces an 11-dimensional Riemannian geometry whose curvature defines a new quantum cosmology without hierarchies, so that all fundamental interactions contribute effectively to the evolution of the universe, a result that is of interest to high energy physicists, cosmologists, mathematicians, philosophers and all those who seek a plausible explanation for the physical world.
Geometry at the Quantum Scale: Understanding the Geometric Language of Relativistic Quantum Mechanics
130
Geometry at the Quantum Scale: Understanding the Geometric Language of Relativistic Quantum Mechanics
130Related collections and offers
Product Details
| ISBN-13: | 9783031611964 |
|---|---|
| Publisher: | Springer Nature Switzerland |
| Publication date: | 10/04/2025 |
| Edition description: | 2024 |
| Pages: | 130 |
| Product dimensions: | 6.10(w) x 9.25(h) x (d) |