Geometry of Complex Numbers [NOOK Book]

Overview



Since its initial publication in 1962, Professor Schwerdtfeger's illuminating book has been widely praised for generating a deeper understanding of the geometrical theory of analytic functions as well as of the connections between different branches of geometry. Its focus lies in the intersection of geometry, analysis, and algebra, with the exposition generally taking place on a moderately advanced level. Much emphasis, however, has been given to the careful exposition of ...

See more details below
Geometry of Complex Numbers

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$10.49
BN.com price
(Save 38%)$16.95 List Price

Overview



Since its initial publication in 1962, Professor Schwerdtfeger's illuminating book has been widely praised for generating a deeper understanding of the geometrical theory of analytic functions as well as of the connections between different branches of geometry. Its focus lies in the intersection of geometry, analysis, and algebra, with the exposition generally taking place on a moderately advanced level. Much emphasis, however, has been given to the careful exposition of details and to the development of an adequate algebraic technique.
In three broad chapters, the author clearly and elegantly approaches his subject. The first chapter, Analytic Geometry of Circles, treats such topics as representation of circles by Hermitian matrices, inversion, stereographic projection, and the cross ratio. The second chapter considers in depth the Moebius transformation: its elementary properties, real one-dimensional projectivities, similarity and classification of various kinds, anti-homographies, iteration, and geometrical characterization. The final chapter, Two-Dimensional Non-Euclidean Geometries, discusses subgroups of Moebius transformations, the geometry of a transformation group, hyperbolic geometry, and spherical and elliptic geometry. For this Dover edition, Professor Schwerdtfeger has added four new appendices and a supplementary bibliography.
Advanced undergraduates who possess a working knowledge of the algebra of complex numbers and of the elements of analytical geometry and linear algebra will greatly profit from reading this book. It will also prove a stimulating and thought-provoking book to mathematics professors and teachers.

"This book is well-written, contains numerous exercises, and has a reasonable bibliography. It is ideal for use as a supplementary text for a course in complex variables. This book should be in every library, and every expert in classical function theory should be familiar with this material. The author has performed a distinct service by making this material so conveniently accessible in a single book." — Mathematical Reviews

Read More Show Less

Product Details

  • ISBN-13: 9780486135861
  • Publisher: Dover Publications
  • Publication date: 4/25/2012
  • Series: Dover Books on Mathematics
  • Sold by: Barnes & Noble
  • Format: eBook
  • Pages: 224
  • File size: 13 MB
  • Note: This product may take a few minutes to download.

Table of Contents

INTRODUCTION: NOTE ON TERMINOLOGY AND NOTATIONS
CHAPTER I. ANALYTIC GEOMETRY OF CIRCLES
§ 1. Representation of Circles by Hermitian Matrices a. One circle b. Two circles c. Pencils of circles
Examples
§ 2. The Inversion a. Definition b. Simple properties of the inversion
Examples
§ 3. Stereographic Projection a. Definition b. Simple properties of the stereographic projection c. Stereographic projection and polarity
Examples
§ 4. Pencils and Bundles of Circles a. Pencils of circles b. Bundles of circles
Examples
§ 5. The Cross Ratio a. The simple ratio b. The double ratio or cross ratio c. The cross ratio in circle geometry
Examples
CHAPTER II. THE MOEBIUS TRANSFORMATION
§ 6. Definition: Elementary Properties a. Definition and notation b. The group of all Moebius transformations c. Simple types of Moebius transformations d. Mapping properties of the Moebius transformations e. Transformation of a circle f. Involutions
Examples
§ 7. Real One-dimensional Projectivities a. Perpectivities b. Projectivities c. Line-circle perspectivity
Examples
§ 8. Similarity and Classification of Moebius Transformations a. Introduction of a new variable b. Normal forms of Moebius transformations c. "Hyperbolic, elliptic, loxodromic transformations"
d. The subgroup of the real Moebius transformations e. The characteristic parallelogram
Examples
§ 9. Classification of Anti-homographies a. Anti-homographies b. Anti-involutions c. Normal forms of non-involutory anti-homographies d. Normal forms of circle matrices and anti-involutions e. Moebius transformations and anti-homographies as products of inversions f. The groups of a pencil
Examples
§ 10. Iteration of a Moebius Transformation a. General remarks on iteration b. Iteration of a Moebius transformation c. Periodic sequences of Moebius transformations d. Moebius transformations with periodic iteration e. Continuous iteration f. Continuous iteration of a Moebius transformation
Examples
§ 11. Geometrical Characterization of the Moebius Transformation a. The fundamental theorem b. Complex projective transformations c. Representation in space
Examples
CHAPTER III. TWO-DIMENSIONAL NON-EUCLIDEAN GEOMETRIES
§ 12. Subgroups of Moebius Transformations a. The group U of the unit circle b. The group R of rotational Moebius transformations c. Normal forms of bundles of circles d. The bundle groups e. Transitivity of the bundle groups
Examples
§ 13. The Geometry of a Transformation Group a. Euclidean geometry b. G-geometry c. Distance function d. G-circles
Examples
§ 14. Hyperbolic Geometry a. Hyperbolic straight lines and distance b. The triangle inequality c. Hyperbolic circles and cycles d. Hyperbolic trigonometry e. Applications
Examples
§ 15. Spherical and Elliptic Geometry a. Spherical straight lines and distance b. Additivity and triangle inequality c. Spherical circles d. Elliptic geometry e. Spherical trigonometry
Examples
APPENDICES
1. Uniqueness of the cross ratio
2. A theorem of H. Haruki
3. Applications of the characteristic parallelogram
4. Complex Numbers in Geometry by I. M. Yaglom
BIBLIOGRAPHY
SUPPLEMENTARY BIBLIOGRAPHY
INDEX
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)