Global Surgery Formula for the Casson-Walker Invariant

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S
3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S
3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases.


As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant.

1100052399
Global Surgery Formula for the Casson-Walker Invariant

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S
3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S
3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases.


As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant.

93.0 In Stock
Global Surgery Formula for the Casson-Walker Invariant

Global Surgery Formula for the Casson-Walker Invariant

by Christine Lescop
Global Surgery Formula for the Casson-Walker Invariant

Global Surgery Formula for the Casson-Walker Invariant

by Christine Lescop

eBook

$93.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S
3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S
3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases.


As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant.


Product Details

ISBN-13: 9781400865154
Publisher: Princeton University Press
Publication date: 09/08/2014
Series: Annals of Mathematics Studies , #140
Sold by: Barnes & Noble
Format: eBook
Pages: 150
File size: 8 MB

About the Author

Christine Lescop is Researcher in Mathematics at the Centre National de la Recherche Scientifique at the Institut Fourier in Grenoble, France.
From the B&N Reads Blog

Customer Reviews