"Golden" Non-euclidean Geometry, The: Hilbert's Fourth Problem, "Golden" Dynamical Systems, And The Fine-structure Constant
This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of 'recursive' hyperbolic functions based on the 'Mathematics of Harmony,' and the 'golden,' 'silver,' and other 'metallic' proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the 'golden' qualitative theory of dynamical systems based on 'metallic' proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems.See Press Release: Application of the mathematics of harmony - Golden non-Euclidean geometry in modern math
1133771994
"Golden" Non-euclidean Geometry, The: Hilbert's Fourth Problem, "Golden" Dynamical Systems, And The Fine-structure Constant
This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of 'recursive' hyperbolic functions based on the 'Mathematics of Harmony,' and the 'golden,' 'silver,' and other 'metallic' proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the 'golden' qualitative theory of dynamical systems based on 'metallic' proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems.See Press Release: Application of the mathematics of harmony - Golden non-Euclidean geometry in modern math
118.0 In Stock

"Golden" Non-euclidean Geometry, The: Hilbert's Fourth Problem, "Golden" Dynamical Systems, And The Fine-structure Constant

"Golden" Non-euclidean Geometry, The: Hilbert's Fourth Problem, "Golden" Dynamical Systems, And The Fine-structure Constant

Hardcover

$118.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of 'recursive' hyperbolic functions based on the 'Mathematics of Harmony,' and the 'golden,' 'silver,' and other 'metallic' proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the 'golden' qualitative theory of dynamical systems based on 'metallic' proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems.See Press Release: Application of the mathematics of harmony - Golden non-Euclidean geometry in modern math

Product Details

ISBN-13: 9789814678292
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 09/06/2016
Series: Series On Analysis, Applications And Computation , #7
Pages: 308
Product dimensions: 6.20(w) x 9.00(h) x 0.80(d)
From the B&N Reads Blog

Customer Reviews