GPCR Molecular Pharmacology and Drug Targeting: Shifting Paradigms and New Directions [NOOK Book]

Overview

G protein-coupled receptors (GPCRs) are a large protein family of transmembrane receptors vital in dictating cellular responses. GPCRs are involved in many diseases, but are also the target of around half of all modern medicinal drugs.  Shifting Paradigms in G Protein Coupled Receptors takes a look at the way GPCRs are examined today, how they react, how their mutations lead to disease, and the many ways in which they can be screened for compounds that modulate them. Chemists, pharmacologists, and biologists...

See more details below
GPCR Molecular Pharmacology and Drug Targeting: Shifting Paradigms and New Directions

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$96.99
BN.com price
(Save 42%)$170.00 List Price
Note: This NOOK Book can be purchased in bulk. Please email us for more information.

Overview

G protein-coupled receptors (GPCRs) are a large protein family of transmembrane receptors vital in dictating cellular responses. GPCRs are involved in many diseases, but are also the target of around half of all modern medicinal drugs.  Shifting Paradigms in G Protein Coupled Receptors takes a look at the way GPCRs are examined today, how they react, how their mutations lead to disease, and the many ways in which they can be screened for compounds that modulate them. Chemists, pharmacologists, and biologists will find essential information in this comprehensive reference.

Read More Show Less

Editorial Reviews

From the Publisher
"Additionally, the presentation of the fundamental concepts of GPCR biology by the authors, who are recognized experts in the GPCR field, is likely to be appreciated by students of pharmacology. . . This is a unique resource for navigating the field of GPCR research." (Doody's, 23 September 2011)

"The first emerge as promising therapeutic targets and, as understanding of their pharmacology advances, new treatments for various diseases can be uncovered." (ChemMedChem, 1 February 2011)

Doody's Review Service
Reviewer: Rachel R Chennault, PhD (American College of Clinical Pharmacy)
Description: This book examines the various properties and functions of G protein-coupled receptors (GPCRs) that make them useful targets for therapeutic intervention and addresses advances in screening approaches to identify potential drug candidates that modulate cellular events upon activation of G protein-coupled receptors.
Purpose: Because our understanding of how G protein-coupled receptors mediate cellular responses is constantly evolving, the purpose of this book is to update readers on recent advances in the field, particularly with respect to the utility of GPCRs as a target class in molecular pharmacology. This book details recent developments in GPCR research and lays the necessary foundation upon which the discovery of new drug products involving GPCRs may proceed.
Audience: The intended audience of scientists includes chemists, pharmacologists, and biologists in both the academic and industrial sectors. Additionally, the presentation of the fundamental concepts of GPCR biology by the authors, who are recognized experts in the GPCR field, is likely to be appreciated by students of pharmacology.
Features: The book begins with a historical perspective on the concept of drug receptors, detailing the processes by which new theories about GPCR functions evolved. Subsequent chapters discuss the appropriateness of both traditional and high-throughput screening techniques to discover modulators of G protein-coupled receptors as a means to develop novel therapeutics. Color illustrations pertaining to these methods and GPCR function are particularly instructive.
Assessment: This is a unique resource for navigating the field of GPCR research. Although other books nay have detailed descriptions of GPCR function, screening methodology, and pharmacology (e.g., G Protein-coupled Receptors: Molecular Pharmacology, Vauquelin and von Mentzer (John Wiley & Sons, 2007), this one devotes an entire chapter to examining hereditary human diseases that arise by GPCR inactivating mutations, expanding the context of GPCR research into potential therapies involving pharmacological chaperones.
Read More Show Less

Product Details

  • ISBN-13: 9781118035177
  • Publisher: Wiley
  • Publication date: 12/10/2010
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 520
  • File size: 12 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Annette Gilchrist, PhD, is Assistant Professor of Pharmaceutical Sciences at Midwestern Univeristy’s Chicago of Pharmacy, and Adjunct Professor at Northwestern University in the Department of Molecular Pharmacology and Biological Chemistry. Previously, she cofounded and was chief scientific officer for Caden Biosciences, and cofounded and was president of Cue BIOtech, companies committed to GPCR discovery efforts. A life sciences industry consultant and regular speaker at ACS, SBS, DIA, BIO, and CHI conferences, she has twenty-four peer-reviewed publications and four issued patents.
Read More Show Less

Table of Contents

Preface.

Contributors.

1. The Evolution of Receptors: From On–Off Switches to Microprocessors (Terry Kenakin).

1.1. Introduction.

1.2. The Receptor as an On–Off Switch.

1.3. Historical Background and Classical Receptor Theory.

1.4. The Operational Model of Drug Action.

1.5. Receptor Antagonism.

1.6. Specific Models of GPCRs (7TM Receptors).

1.7. The Receptor as Microprocessor: Ternary Complex Models.

1.8. Receptors as Basic Drug Recognition Units.

1.9. Receptor Structure.

1.10. Future Considerations.

References.

2. The Evolving Pharmacology of GPCRs 27 (Lauren T. May, Nicholas D. Holliday, and Stephen J. Hill).

2.1. Agonists, Neutral Antagonists, and Inverse Agonists.

2.2. LDTRS/Protean Agonism.

2.3. Molecular Mechanisms of GPCR Ligand Binding.

2.4. Two GPCR Ligands Binding at Once—Concept of Allosterism.

2.5. GPCR Dimerization.

2.6. Future Perspectives.

Acknowledgments.

References.

3. The Emergence of Allosteric Modulators for G Protein-Coupled Receptors (Karen J. Gregory, Celine Valant, John Simms, Patrick M. Sexton, and Arthur Christopoulos).

3.1. Introduction.

3.2. Foundations of Allosteric Receptor Theory.

3.3. Models for Understanding the Effects of Allosteric Modulators.

3.4. Types of Allosteric Modulators and Their Properties.

3.5. Detection and Quantification of Allosteric Interactions.

3.6. Some Examples of GPCR Allosteric Modulators.

3.7. Concluding Remarks.

References.

4. Receptor-Mediated G Protein Activation: How, How Many, and Where? (Ingrid Gsandtner, Christian W. Gruber, and Michael Freissmuth).

4.1. The Mechanical Problem—Three Different Solutions.

4.2. Receptor Monomers–Dimers–Oligomers: One Size Fits All?

4.3. Corrals, Fences, Rafts—Are There Privileged Places for GPCR Activation?

Acknowledgments.

References.

5. Molecular Pharmacology of Frizzleds—with Implications for Possible Therapy (Gunnar Schulte).

5.1. Introduction.

5.2. Frizzleds as WNT Receptors.

5.3. Frizzled Signaling 120.

5.4. Frizzleds—Physiology and Possible Therapy.

Acknowledgments.

References.

6. Secretin Receptor Dimerization: A Possible Functionally Important Paradigm for Family B G Protein-Coupled Receptors (Kaleeckal G. Harikumar, Maoqing Dong, and Laurence J. Miller).

6.1. Methodological Approaches to GPCR Oligomerization.

6.2. Structural Themes for GPCR Oligomerization.

6.3. Functional Effects of GPCR Oligomerization.

6.4. Secretin Receptor Oligomerization.

References.

7. Past and Future Strategies for GPCR Deorphanization (Angélique Levoye, Nathalie Clement, Elodie Tenconi and Ralf Jockers).

7.1. Introduction.

7.2. Current Strategies to Identify the Ligand and Function of Orphan 7TM Proteins.

7.3. Functional Assays for Deorphanization.

7.4. Future Directions and New Concepts.

7.5. Controversial Issues.

Acknowledgments.

References.

8. High-Throughput GPCR Screening Technologies and the Emerging Importance of the Cell Phenotype (Terry Reisine and Richard M. Eglen).

8.1. Introduction.

8.2. How Are GPCR Drugs Discovered?

8.3. GPCR Dependence on G Proteins.

8.4. Technologies for GPCR Compound Screening and Drug Discovery.

8.5. Importance of Target Cells in GPCR HTS Assays.

8.6. Summary.

References.

9. Are "Traditional" Biochemical Techniques Out of Fashion in the New Era of GPCR Pharmacology? (Maria Teresa Dell’anno and Maria Rosa Mazzoni).

9.1. Overview.

9.2. Receptor Binding Assays.

9.3. Methods for Measurement of cAMP.

9.4. Conclusions.

References.

10. Fluorescence and Resonance Energy Transfer Shine New Light on GPCR Function (Carsten Hoffmann and Moritz Bünemann).

10.1. Overview.

10.2. Introduction.

10.3. Labeling GPCRs with Fluorescent Tags.

10.4. Detection of Fluorescence and Bioluminescence.

10.5. Fluorescence-Based Assays to Study Receptor Localization, Trafficking and Receptor Function.

10.6. Resonance Energy Transfer, a Tool to Get New Insights into GPCR Function.

10.7. Analysis of Steady-State Protein–Protein Interaction by Means of RET.

10.8. Kinetic Analysis of Protein–Protein Interactions by Means of FRET.

10.9. Detection of Receptor Function by Fluorescence Resonance Energy.

References.

11. Integration of Label-Free Detection Methods in GPCR Drug Discovery (Oliver Nayler, Magdalena Birker-Robaczewska, and John Gatfield).

11.1. Overview.

11.2. Introduction.

11.3. Label-Free Technologies—Past and Present.

11.4. Discussion.

Acknowledgments.

References.

12. Screening for Allosteric Modulators of G Protein-Coupled Receptors (Christopher Langmead).

12.1. Introduction.

12.2. The Allosteric Ternary Complex Model, Radioligand Binding, and Affinity.

12.3. Beyond Affinity—Functional Assays, Efficacy, and Allosteric Agonism.

12.4. Allosteric Modulator Titration Curves.

12.5. The Impact of Functional Assay Format on Allosteric Modulator Screening.

12.6. Taking Advantage of Structural Understanding of Allosteric Binding Sites.

12.7. Summary and Future Directions.

References.

13. Ultra-High-Throughput Screening Assays for GPCRs (Priya Kunapuli).

13.1. Introduction.

13.2. Assay Types for GPCRs in uHTS.

13.3. Summary.

Acknowledgments.

References.

14. New Techniques to Express and Crystallize G Protein-Coupled Receptors (James C. Errey and Fiona H. Marshall).

14.1. Introduction.

14.2. Key Problems Limiting Production of 3D GPCR Structures.

14.3. History of GPCR Structures.

14.4. The Search for Other GPCR Structures.

14.5. Protein Purification and Solubilization.

14.6. In Cubo Crystallization.

14.7. Engineering Receptor Stability.

14.8. Structures of the â2AR.

14.9. The Adenosine A2a Receptor.

14.10. Conclusions and Future Developments.

Acknowledgments.

References.

15. Structure and Modeling of GPCRs: Implications for Drug Discovery (Kimberly A. Reynolds, Vsevolod Katritch, and Ruben Abagyan).

15.1. Introduction.

15.2. High-Resolution GPCR Modeling.

15.3. Constructing and Evaluating Homology Models of Other Receptor Types.

15.4. Modeling GPCR Functional Features—Analysis of Activation and Signaling.

15.5. Beyond Class A: Modeling of Other GPCR Families.

15.6. Summary and Conclusions.

Acknowledgments.

References.

16. X-Ray Structure Developments for GPCR Drug Targets (Michael Sabio and Sidney W. Topiol).

16.1. Overview.

16.2. Introduction.

16.3. Class A GPCRs.

16.4. Class C GPCRs.

16.5. Conclusions.

References.

17. Pharmacological Chaperones: Potential for the Treatment of Hereditary Diseases Caused by Mutations in G Protein-Coupled Receptors (Kenneth J. Valenzano, Elfrida R. Benjamin,Patricia René, and Michel Bouvier).

17.1. Overview.

17.2. Introduction.

17.3. NDI and the V2R.

17.4. RP and the Rhodopsin Receptor.

17.5. IHH and the Gonadotropin-Releasing Hormone Receptor.

17.6. Other Human Diseases Caused by Inactivating Mutations in GPCRs.

17.7. Considerations for the Therapeutic Use of Pharmacological Chaperones.

17.8. Concluding Remarks.

Acknowledgments.

References.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)