The Grand Design

( 716 )

Overview

#1 NEW YORK TIMES BESTSELLER

When and how did the universe begin? Why are we here? What is the nature of reality? Is the apparent “grand design” of our universe evidence of a benevolent creator who set things in motion—or does science offer another explanation? In this startling and lavishly illustrated book, Stephen Hawking and Leonard Mlodinow present the most recent scientific thinking about these and other abiding mysteries of the universe,...

See more details below
Audiobook (MP3 - Unabridged)
$11.62
BN.com price
(Save 17%)$14.00 List Price
The Grand Design

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$13.99
BN.com price
This digital version does not exactly match the physical book displayed here.

Overview

#1 NEW YORK TIMES BESTSELLER

When and how did the universe begin? Why are we here? What is the nature of reality? Is the apparent “grand design” of our universe evidence of a benevolent creator who set things in motion—or does science offer another explanation? In this startling and lavishly illustrated book, Stephen Hawking and Leonard Mlodinow present the most recent scientific thinking about these and other abiding mysteries of the universe, in nontechnical language marked by brilliance and simplicity.

According to quantum theory, the cosmos does not have just a single existence or history. The authors explain that we ourselves are the product of quantum fluctuations in the early universe, and show how quantum theory predicts the “multiverse”—the idea that ours is just one of many universes that appeared spontaneously out of nothing, each with different laws of nature. They conclude with a riveting assessment of M-theory, an explanation of the laws governing our universe that is currently the only viable candidate for a “theory of everything”: the unified theory that Einstein was looking for, which, if confirmed, would represent the ultimate triumph of human reason.

Read More Show Less
  • Leonard Mlodinow
    Leonard Mlodinow  

Editorial Reviews

James Trefil
I've waited a long time for this book. It gets into the deepest questions of modern cosmology without a single equation. The reader will be able to get through it without bogging down in a lot of technical detail and will, I hope, have his or her appetite whetted for books with a deeper technical content.
—The Washington Post
Publishers Weekly
Hawking, the renowned Cambridge mathematician, teams up with Mlodinow, a physicist at Caltech, for a brief introduction to "the grand design" of the universe. If this project seems ambitious for a four and a half–hour audio production, it is; however, even general readers will be able to follow along as the authors guide us through M-theories, quantum mechanics, general and special relativity, and other mind-blowing cosmological discoveries of the last century. The goal of all these journeys through the history of science is to answer some basic questions: why is there a universe in the first place? What other universes may in fact be possible, given Richard Feynman's theory of multiple histories? The audio version of this book is simple and scaled down. Despite an engaging and capable performance by West End stage actor Steve West, some listeners might long for more content—diagrams or video tracks to accompany and augment the lecture. A Bantam hardcover. (Sept.)
From the Publisher
“In this short and sprightly book . . . Hawking and Mlodinow take the reader through a whirlwind tour of fundamental physics and cosmology.”—The Wall Street Journal

“Fascinating . . . a wealth of ideas [that] leave us with a clearer understanding of modern physics in all its invigorating complexity.”—Los Angeles Times
 
“The authors bring to the field an anecdotal clarity that is something of a first for this genre. . . . Making science like this interesting is not all that hard; making it accessible is the real trick.”—Time
 
“Provocative pop science, an exploration of the latest thinking about the origins of our universe.”—The New York Times
 
“Introduces the reader to topics at the frontier of theoretical physics . . . more clearly for general readers than I have seen before.”—Steven Weinberg, The New York Review of Books
 
“Groundbreaking.”—The Washington Post
 
“A provocative, mind-expanding book.”—The Plain Dealer
Library Journal
Physicists Hawking (www.hawking.org.uk) and Mlodinow (Feynman's Rainbow), who last collaborated on A Briefer History of Time (2005), here embark on a journey to explore the origins of the universe and of life itself, presenting a collection of overlapping theories to help "fill in the blanks" of quantum physics and the theory of relativity. But though they use humor and draw on everyday experiences to which lay audiences can relate, this is not leisurely listening material; at times, it can be tough going. Thankfully, actor/narrator Steve West does an admirable job of keeping listeners focused and moving ahead. Sure to inspire, provoke, and anger audiences—perhaps even all three at the same time—this scholarly title is recommended as demand warrants. [The Bantam hc, which published in September, was a New York Times best seller.—Ed.]—Emma Duncan, Brampton Lib., Ont.
Read More Show Less

Product Details

  • ISBN-13: 9781415966624
  • Publisher: Books on Tape, Inc.
  • Publication date: 9/7/2010
  • Format: MP3
  • Edition description: Unabridged
  • Sales rank: 778,711
  • Ships to U.S.and APO/FPO addresses only.

Meet the Author

Stephen Hawking
STEPHEN HAWKING is Lucasian Professor of Mathematics at the University of Cambridge and the author of several books for the general reader, including the worldwide publishing phenomenon A Brief History of Time and its more accessible version, published in 2005: A Briefer History of Time (written with Leonard Mlodinow); The Universe in a Nutshell; The Illustrated A Brief History of Time; and the essay collection Black Holes and Baby Universes. Physicist LEONARD MLODINOW, who teaches at Caltech, is most recently the author of the bestselling and widely praised The Drunkard's Walk as well as Euclid's Window and Feynman's Rainbow.

Biography

In the universe as a whole, the nature of black holes may be one of the most puzzling mysteries. No less puzzling, in the slightly smaller universe of book publishing, is the astounding popular success of Stephen Hawking's 1988 book on the matter, or anti-matter, as it were: A Brief History of Time: From the Big Bang to Black Holes.

Clocking in at just over 200 pages, it was, indeed, brief, but it was hardly the easy read its marketers promised. Nor did it stray much beyond the tone of a scholarly lecture, though at times it did take quick autobiographical peeks into Hawking's personal life. Still, it is just the author's persona that may have been the selling point prompting more than 10 million people worldwide to pick up a copy -- and to have it translated into more than 40 languages in the 10 years since its release.

For Stephen Hawking is an instantly recognizable public figure -- even for those who haven't delved into his so far unprovable theories about black holes. Stricken by amyotrophic lateral sclerosis (ALS) -- or Lou Gehrig's disease, as it is called in the States -- while he was working toward his doctorate at Cambridge University, this Englishman is known for the keen wit and intellect that reside within his severely disabled body. He uses a motorized wheelchair to get around and a voice synthesizer to communicate -- a development, he complains, that has given him an American accent. He has guest-starred, in cartoon form, on an episode of The Simpsons and has appeared in the flesh on Star Trek: The Next Generation, using the benefits of time travel to play poker with Albert Einstein and Isaac Newton. (He has said he doesn't believe in the theory himself, noting that the most powerful evidence of its impossibility is the present-day dearth of time-traveling tourists from the future.)

The son of a research biologist, Hawking resisted familial urging that he major in biology and instead studied physics and chemistry -- as a nod to his father -- when he went to Oxford University as a 17-year-old. In academic writing, Hawking had an extensive career pre-History, starting with The Large Scale Structure of Space-Time, coauthored with G.F.R. Ellis in 1973. But in the late 1980s, faced with the expenses incurred by his illness, he took up Bantam Books' offer to explain the mysteries of the universe to the lay public.

"This is one of the best books for laymen on this subject that has appeared in recent years," The Christian Science Monitor wrote in 1988. "Hawking is one of the greatest theoretical cosmologists of our time. He is greater, by consensus among his colleagues, than other expert authors who have written good popular books on the subject recently. And he is greater, by far, than the ‘experts' who have ‘explained' quantum physics and cosmology in terms that support a religious agenda." And The New York Times in April 1988 said, "Through his cerebral journeys, Mr. Hawking is bravely taking some of the first, though tentative, steps toward quantizing the early universe, and he offers us a provocative glimpse of the work in progress."

Since then, A Brief History of Time has been republished in an illustrated edition (1996) and as an updated and expanded 10th anniversary edition (1998). In Black Holes and Baby Universes and Other Essays, a collection of 13 essays and the transcript of an extended interview with the BBC, Hawking turned more autobiographical, mixing stories about his studies in college and the beginning of his awareness that he had ALS with thoughts on how black holes can spawn baby universes and on the scientific community's efforts to create a unified theory that will explain everything in the universe. And in The Universe in a Nutshell, his sequel to A Brief History of Time, Hawking takes the same approach as he did in his first bestseller, explaining to the lay reader such ideas as the superstring theory, supergravity, time travel, and quantum theory.

A common current in Hawking's writing -- aside from his grasp of the complexities of the universe -- is a sharp wit. In one of the rare personal reflections in A Brief History of Time, he said he began thinking about black holes in the early 1970s in the evenings as he was getting ready for bed: "My disability makes this rather a slow process, so I had plenty of time." In life, he has a reputation for quickly turning his wheelchair away of a conversation that displeases him, even running his wheels over the toes of the offending conversant.

Even questions about his muse are likely to draw an answer tinged with pointed humor. When Time asked Hawking why he decided to add explaining the universe to a schedule already taxed by his scholarly writing and lecture tours, he answered, "I have to pay for my nurses."

Good To Know

Hawking worked 1,000 hours in his three years at Oxford, roughly an hour a day. "I'm not proud of this lack of work," he said in Stephen Hawking's a Brief History of Time: A Reader's Companion. "I'm just describing my attitude at the time, which I shared with most of my fellow students: an attitude of complete boredom and feeling that nothing was worth making an effort for."

Despite his science degrees, Hawking has no formal training in math and has said he had to pick up what he knows as he went along.

Read More Show Less
    1. Hometown:
      Cambridge, England
    1. Date of Birth:
      January 8, 1942
    2. Place of Birth:
      Oxford, England

Read an Excerpt

Chapter 1

We each exist for but a short time, and in that time explore but a small part of the whole universe. But humans are a curious species. We wonder, we seek answers. Living in this vast world that is by turns kind and cruel, and gazing at the immense heavens above, people have always asked a multitude of questions: How can we understand the world in which we find ourselves? How does the universe behave? What is the nature of reality? Where did all this come from? Did the universe need a creator? Most of us do not spend most of our time worrying about these questions, but almost all of us worry about them some of the time.

Traditionally these are questions for philosophy, but philosophy is dead. Philosophy has not kept up with modern developments in science, particularly physics. Scientists have become the bearers of the torch of discovery in our quest for knowledge. The purpose of this book is to give the answers that are suggested by recent discoveries and theoretical advances. They lead us to a new picture of the universe and our place in it that is very different from the traditional one, and different even from the picture we might have painted just a decade or two ago. Still, the first sketches of the new concept can be traced back almost a century.

According to the traditional conception of the universe, objects move on well-defined paths and have definite histories. We can specify their precise position at each moment in time. Although that account is successful enough for everyday purposes, it was found in the 1920s that this "classical" picture could not account for the seemingly bizarre behavior observed on the atomic and subatomic scales of existence. Instead it was necessary to adopt a different framework, called quantum physics. Quantum theories have turned out to be remarkably accurate at predicting events on those scales, while also reproducing the predictions of the old classical theories when applied to the macroscopic world of daily life. But quantum and classical physics are based on very different conceptions of physical reality.

Quantum theories can be formulated in many different ways, but what is probably the most intuitive description was given by Richard (Dick) Feynman, a colorful character who worked at the California Institute of Technology and played the bongo drums at a strip joint down the road. According to Feynman, a system has not just one history but every possible history. As we seek our answers, we will explain Feynman's approach in detail, and employ it to explore the idea that the universe itself has no single history, nor even an independent existence. That seems like a radical idea, even to many physicists. Indeed, like many notions in today's science, it appears to violate common sense. But common sense is based upon everyday experience, not upon the universe as it is revealed through the marvels of technologies such as those that allow us to gaze deep into the atom or back to the early universe.

Until the advent of modern physics it was generally thought that all knowledge of the world could be obtained through direct observation, that things are what they seem, as perceived through our senses. But the spectacular success of modern physics, which is based upon concepts such as Feynman's that clash with everyday experience, has shown that that is not the case. The naive view of reality therefore is not compatible with modern physics. To deal with such paradoxes we shall adopt an approach that we call model-dependent realism. It is based on the idea that our brains interpret the input from our sensory organs by making a model of the world. When such a model is successful at explaining events, we tend to attribute to it, and to the elements and concepts that constitute it, the quality of reality or absolute truth. But there may be different ways in which one could model the same physical situation, with each employing different fundamental elements and concepts. If two such physical theories or models accurately predict the same events, one cannot be said to be more real than the other; rather, we are free to use whichever model is most convenient.

In the history of science we have discovered a sequence of better and better theories or models, from Plato to the classical theory of Newton to modern quantum theories. It is natural to ask: Will this sequence eventually reach an end point, an ultimate theory of the universe, that will include all forces and predict every observation we can make, or will we continue forever finding better theories, but never one that cannot be improved upon? We do not yet have a definitive answer to this question, but we now have a candidate for the ultimate theory of everything, if indeed one exists, called M- theory. M-theory is the only model that has all the properties we think the final theory ought to have, and it is the theory upon which much of our later discussion is based.

M-theory is not a theory in the usual sense. It is a whole family of different theories, each of which is a good description of observations only in some range of physical situations. It is a bit like a map. As is well known, one cannot show the whole of the earth's surface on a single map. The usual Mercator projection used for maps of the world makes areas appear larger and larger in the far north and south and doesn't cover the North and South Poles. To faithfully map the entire earth, one has to use a collection of

maps, each of which covers a limited region. The maps overlap each other, and where they do, they show the same landscape.

M-theory is similar. The different theories in the M-theory family may look very different, but they can all be regarded as aspects of the same underlying theory. They are versions of the theory that are applicable only in limited ranges-for example, when certain quantities such as energy are small. Like the overlapping maps in a Mercator projection, where the ranges of different versions overlap, they predict the same phenomena. But just as there is no flat map that is a good representation of the earth's entire surface, there is no single theory that is a good representation of observations in all situations.

We will describe how M-theory may offer answers to the question of creation. According to M-theory, ours is not the only universe. Instead, M-theory predicts that a great many universes were created out of nothing. Their creation does not require the intervention of some supernatural being or god. Rather, these multiple universes arise naturally from physical law. They are a prediction of science. Each universe has many possible histories and many possible states at later times, that is, at times like the present, long after their creation. Most of these states will be quite unlike the universe we observe and quite unsuitable for the existence of any form of life. Only a very few would allow creatures like us to exist. Thus our presence selects out from this vast array only those universes that are compatible with our existence. Although we are puny and insignificant on the scale of the cosmos, this makes us in a sense the lords of creation.

To understand the universe at the deepest level, we need to know not only how the universe behaves, but why.

Why is there something rather than nothing?

Why do we exist?

Why this particular set of laws and not some other?

This is the Ultimate Question of Life, the Universe, and Everything. We shall attempt to answer it in this book. Unlike the answer given in The Hitchhiker's Guide to the Galaxy, ours won't be simply "42."

2

The Rule of Law

Skoll the wolf who shall scare the Moon

Till he flies to the Wood-of-Woe:

Hati the wolf, Hridvitnir's kin,

Who shall pursue the sun.

-"Grimnismal," The Elder Edda

n Viking mythology, Skoll and Hati chase the sun and the moon. When the wolves catch either one, there is an eclipse. When this happens, the people on earth rush to rescue the sun or moon by making as much noise as they can in hopes of scaring off the wolves. There are similar myths in other cultures. But after a time people must have noticed that the sun and moon soon emerged from the eclipse regardless of whether they ran around screaming and banging on things. After a time they must also have noticed that the eclipses didn't just happen at random: They occurred in regular patterns that repeated themselves. These patterns were most obvious for eclipses of the moon and enabled the ancient Babylonians to predict lunar eclipses fairly accurately even though they didn't realize that they were caused by the earth blocking the light of the sun. Eclipses of the sun were more difficult to predict because they are visible only in a corridor on the earth about 30 miles wide. Still, once grasped, the patterns made it clear the eclipses were not dependent on the arbitrary whims of supernatural beings, but rather governed by laws.

Despite some early success predicting the motion of celestial bodies, most events in nature appeared to our ancestors to be impossible to predict. Volcanoes, earthquakes, storms, pestilences, and ingrown toenails all seemed to occur without obvious cause or pattern. In ancient times it was natural to ascribe the violent acts of nature to a pantheon of mischievous or malevolent deities. Calamities were often taken as a sign that we had somehow offended the gods. For example, in about 4800 bc the Mount Mazama volcano in Oregon erupted, raining rock and burning ash for years, and leading to the many years of rainfall that eventually filled the volcanic crater today called Crater Lake. The Klamath Indians of Oregon have a legend that faithfully matches every geologic detail of the event but adds a bit of drama by portraying a human as the cause of the catastrophe. The human capacity for guilt is such that people can always find ways to blame themselves. As the legend goes, Llao, the chief of the Below World, falls in love with the beautiful human daughter of a Klamath chief. She spurns him, and in revenge Llao tries to destroy the Klamath with fire. Luckily, according to the legend, Skell, the chief of the Above World, pities the humans and does battle with his underworld counterpart. Eventually Llao, injured, falls back inside Mount Mazama, leaving a huge hole, the crater that eventually filled with water.

Ignorance of nature's ways led people in ancient times to invent gods to lord it over every aspect of human life. There were gods of love and war; of the sun, earth, and sky; of the oceans and rivers; of rain and thunderstorms; even of earthquakes and volcanoes. When the gods were pleased, mankind was treated to good weather, peace, and freedom from natural disaster and disease. When they were displeased, there came drought, war, pestilence, and epidemics. Since the connection of cause and effect in nature was invisible to their eyes, these gods appeared inscrutable, and people at their mercy. But with Thales of Miletus (ca. 624 bc-

ca. 546 bc) about 2,600 years ago, that began to change. The idea arose that nature follows consistent principles that could be deciphered. And so began the long process of replacing the notion of the reign of gods with the concept of a universe that is governed by laws of nature, and created according to a blueprint we could someday learn to read.

Viewed on the timeline of human history, scientific inquiry is a very new endeavor. Our species, Homo sapiens, originated in sub-Saharan Africa around 200,000 bc. Written language dates back only to about 7000 bc, the product of societies centered around the cultivation of grain. (Some of the oldest written inscriptions concern the daily ration of beer allowed to each citizen.) The earliest written records from the great civilization of ancient Greece date back to the ninth century bc, but the height of that civilization, the "classical period," came several hundred years later, beginning a little before 500 bc. According to Aristotle (384 bc-322 bc), it was around that time that Thales first developed the idea that the world can be understood, that the complex happenings around us could be reduced to simpler principles and explained without resorting to mythical or theological explanations.

Thales is credited with the first prediction of a solar eclipse in 585 bc, though the great precision of his prediction was probably a lucky guess. He was a shadowy figure who left behind no writings of his own. His home was one of the intellectual centers in a region called Ionia, which was colonized by the Greeks and exerted an influence that eventually reached from Turkey as far west as Italy. Ionian science was an endeavor marked by a strong interest in uncovering fundamental laws to explain natural phenomena, a tremendous milestone in the history of human ideas. Their approach was rational and in many cases led to conclusions surprisingly similar to what our more sophisticated methods have led us to believe today. It represented a grand beginning. But over the centuries much of Ionian science would be forgotten-only to be rediscovered or reinvented, sometimes more than once.

According to legend, the first mathematical formulation of what we might today call a law of nature dates back to an Ionian named Pythagoras (ca. 580 bc-ca. 490 bc), famous for the theorem named after him: that the square of the hypotenuse (longest side) of a right triangle equals the sum of the squares of the other two sides. Pythagoras is said to have discovered the numerical relationship between the length of the strings used in musical instruments and the harmonic combinations of the sounds. In today's language we would describe that relationship by saying that the frequency-the number of vibrations per second-of a string vibrating under fixed tension is inversely proportional to the length of the string. From the practical point of view, this explains why shorter guitar strings produce a higher pitch than longer ones. Pythagoras probably did not really discover this-he also did not discover the theorem that bears his name- but there is evidence that some relation between string length and pitch was known in his day. If so, one could call that simple mathematical formula the first instance of what we now know as theoretical physics.

Read More Show Less

Table of Contents

List of Chapter Titles:
1. The Mystery of Being
2. The Rule of Law
3. What is Reality?
4. Alternative Histories
5. The Theory of Everything
6. Choosing Our Universe
7. The Apparent Miracle
8. The Grand Design

Read More Show Less

First Chapter

The Grand Design


By Stephen Hawking

Bantam

Copyright © 2010 Stephen Hawking
All right reserved.

ISBN: 9780553805376

Chapter 1

We each exist for but a short time, and in that time explore but a small part of the whole universe. But humans are a curious species. We wonder, we seek answers. Living in this vast world that is by turns kind and cruel, and gazing at the immense heavens above, people have always asked a multitude of questions: How can we understand the world in which we find ourselves? How does the universe behave? What is the nature of reality? Where did all this come from? Did the universe need a creator? Most of us do not spend most of our time worrying about these questions, but almost all of us worry about them some of the time.

Traditionally these are questions for philosophy, but philosophy is dead. Philosophy has not kept up with modern developments in science, particularly physics. Scientists have become the bearers of the torch of discovery in our quest for knowledge. The purpose of this book is to give the answers that are suggested by recent discoveries and theoretical advances. They lead us to a new picture of the universe and our place in it that is very different from the traditional one, and different even from the picture we might have painted just a decade or two ago. Still, the first sketches of the new concept can be traced back almost a century.

According to the traditional conception of the universe, objects move on well-defined paths and have definite histories. We can specify their precise position at each moment in time. Although that account is successful enough for everyday purposes, it was found in the 1920s that this "classical" picture could not account for the seemingly bizarre behavior observed on the atomic and subatomic scales of existence. Instead it was necessary to adopt a different framework, called quantum physics. Quantum theories have turned out to be remarkably accurate at predicting events on those scales, while also reproducing the predictions of the old classical theories when applied to the macroscopic world of daily life. But quantum and classical physics are based on very different conceptions of physical reality.

Quantum theories can be formulated in many different ways, but what is probably the most intuitive description was given by Richard (Dick) Feynman, a colorful character who worked at the California Institute of Technology and played the bongo drums at a strip joint down the road. According to Feynman, a system has not just one history but every possible history. As we seek our answers, we will explain Feynman's approach in detail, and employ it to explore the idea that the universe itself has no single history, nor even an independent existence. That seems like a radical idea, even to many physicists. Indeed, like many notions in today's science, it appears to violate common sense. But common sense is based upon everyday experience, not upon the universe as it is revealed through the marvels of technologies such as those that allow us to gaze deep into the atom or back to the early universe.

Until the advent of modern physics it was generally thought that all knowledge of the world could be obtained through direct observation, that things are what they seem, as perceived through our senses. But the spectacular success of modern physics, which is based upon concepts such as Feynman's that clash with everyday experience, has shown that that is not the case. The naive view of reality therefore is not compatible with modern physics. To deal with such paradoxes we shall adopt an approach that we call model-dependent realism. It is based on the idea that our brains interpret the input from our sensory organs by making a model of the world. When such a model is successful at explaining events, we tend to attribute to it, and to the elements and concepts that constitute it, the quality of reality or absolute truth. But there may be different ways in which one could model the same physical situation, with each employing different fundamental elements and concepts. If two such physical theories or models accurately predict the same events, one cannot be said to be more real than the other; rather, we are free to use whichever model is most convenient.

In the history of science we have discovered a sequence of better and better theories or models, from Plato to the classical theory of Newton to modern quantum theories. It is natural to ask: Will this sequence eventually reach an end point, an ultimate theory of the universe, that will include all forces and predict every observation we can make, or will we continue forever finding better theories, but never one that cannot be improved upon? We do not yet have a definitive answer to this question, but we now have a candidate for the ultimate theory of everything, if indeed one exists, called M- theory. M-theory is the only model that has all the properties we think the final theory ought to have, and it is the theory upon which much of our later discussion is based.

M-theory is not a theory in the usual sense. It is a whole family of different theories, each of which is a good description of observations only in some range of physical situations. It is a bit like a map. As is well known, one cannot show the whole of the earth's surface on a single map. The usual Mercator projection used for maps of the world makes areas appear larger and larger in the far north and south and doesn't cover the North and South Poles. To faithfully map the entire earth, one has to use a collection of

maps, each of which covers a limited region. The maps overlap each other, and where they do, they show the same landscape.

M-theory is similar. The different theories in the M-theory family may look very different, but they can all be regarded as aspects of the same underlying theory. They are versions of the theory that are applicable only in limited ranges-for example, when certain quantities such as energy are small. Like the overlapping maps in a Mercator projection, where the ranges of different versions overlap, they predict the same phenomena. But just as there is no flat map that is a good representation of the earth's entire surface, there is no single theory that is a good representation of observations in all situations.

We will describe how M-theory may offer answers to the question of creation. According to M-theory, ours is not the only universe. Instead, M-theory predicts that a great many universes were created out of nothing. Their creation does not require the intervention of some supernatural being or god. Rather, these multiple universes arise naturally from physical law. They are a prediction of science. Each universe has many possible histories and many possible states at later times, that is, at times like the present, long after their creation. Most of these states will be quite unlike the universe we observe and quite unsuitable for the existence of any form of life. Only a very few would allow creatures like us to exist. Thus our presence selects out from this vast array only those universes that are compatible with our existence. Although we are puny and insignificant on the scale of the cosmos, this makes us in a sense the lords of creation.

To understand the universe at the deepest level, we need to know not only how the universe behaves, but why.

Why is there something rather than nothing?

Why do we exist?

Why this particular set of laws and not some other?

This is the Ultimate Question of Life, the Universe, and Everything. We shall attempt to answer it in this book. Unlike the answer given in The Hitchhiker's Guide to the Galaxy, ours won't be simply "42."

2

The Rule of Law

Skoll the wolf who shall scare the Moon

Till he flies to the Wood-of-Woe:

Hati the wolf, Hridvitnir's kin,

Who shall pursue the sun.

-"Grimnismal," The Elder Edda

n Viking mythology, Skoll and Hati chase the sun and the moon. When the wolves catch either one, there is an eclipse. When this happens, the people on earth rush to rescue the sun or moon by making as much noise as they can in hopes of scaring off the wolves. There are similar myths in other cultures. But after a time people must have noticed that the sun and moon soon emerged from the eclipse regardless of whether they ran around screaming and banging on things. After a time they must also have noticed that the eclipses didn't just happen at random: They occurred in regular patterns that repeated themselves. These patterns were most obvious for eclipses of the moon and enabled the ancient Babylonians to predict lunar eclipses fairly accurately even though they didn't realize that they were caused by the earth blocking the light of the sun. Eclipses of the sun were more difficult to predict because they are visible only in a corridor on the earth about 30 miles wide. Still, once grasped, the patterns made it clear the eclipses were not dependent on the arbitrary whims of supernatural beings, but rather governed by laws.

Despite some early success predicting the motion of celestial bodies, most events in nature appeared to our ancestors to be impossible to predict. Volcanoes, earthquakes, storms, pestilences, and ingrown toenails all seemed to occur without obvious cause or pattern. In ancient times it was natural to ascribe the violent acts of nature to a pantheon of mischievous or malevolent deities. Calamities were often taken as a sign that we had somehow offended the gods. For example, in about 4800 bc the Mount Mazama volcano in Oregon erupted, raining rock and burning ash for years, and leading to the many years of rainfall that eventually filled the volcanic crater today called Crater Lake. The Klamath Indians of Oregon have a legend that faithfully matches every geologic detail of the event but adds a bit of drama by portraying a human as the cause of the catastrophe. The human capacity for guilt is such that people can always find ways to blame themselves. As the legend goes, Llao, the chief of the Below World, falls in love with the beautiful human daughter of a Klamath chief. She spurns him, and in revenge Llao tries to destroy the Klamath with fire. Luckily, according to the legend, Skell, the chief of the Above World, pities the humans and does battle with his underworld counterpart. Eventually Llao, injured, falls back inside Mount Mazama, leaving a huge hole, the crater that eventually filled with water.

Ignorance of nature's ways led people in ancient times to invent gods to lord it over every aspect of human life. There were gods of love and war; of the sun, earth, and sky; of the oceans and rivers; of rain and thunderstorms; even of earthquakes and volcanoes. When the gods were pleased, mankind was treated to good weather, peace, and freedom from natural disaster and disease. When they were displeased, there came drought, war, pestilence, and epidemics. Since the connection of cause and effect in nature was invisible to their eyes, these gods appeared inscrutable, and people at their mercy. But with Thales of Miletus (ca. 624 bc-

ca. 546 bc) about 2,600 years ago, that began to change. The idea arose that nature follows consistent principles that could be deciphered. And so began the long process of replacing the notion of the reign of gods with the concept of a universe that is governed by laws of nature, and created according to a blueprint we could someday learn to read.

Viewed on the timeline of human history, scientific inquiry is a very new endeavor. Our species, Homo sapiens, originated in sub-Saharan Africa around 200,000 bc. Written language dates back only to about 7000 bc, the product of societies centered around the cultivation of grain. (Some of the oldest written inscriptions concern the daily ration of beer allowed to each citizen.) The earliest written records from the great civilization of ancient Greece date back to the ninth century bc, but the height of that civilization, the "classical period," came several hundred years later, beginning a little before 500 bc. According to Aristotle (384 bc-322 bc), it was around that time that Thales first developed the idea that the world can be understood, that the complex happenings around us could be reduced to simpler principles and explained without resorting to mythical or theological explanations.

Thales is credited with the first prediction of a solar eclipse in 585 bc, though the great precision of his prediction was probably a lucky guess. He was a shadowy figure who left behind no writings of his own. His home was one of the intellectual centers in a region called Ionia, which was colonized by the Greeks and exerted an influence that eventually reached from Turkey as far west as Italy. Ionian science was an endeavor marked by a strong interest in uncovering fundamental laws to explain natural phenomena, a tremendous milestone in the history of human ideas. Their approach was rational and in many cases led to conclusions surprisingly similar to what our more sophisticated methods have led us to believe today. It represented a grand beginning. But over the centuries much of Ionian science would be forgotten-only to be rediscovered or reinvented, sometimes more than once.

According to legend, the first mathematical formulation of what we might today call a law of nature dates back to an Ionian named Pythagoras (ca. 580 bc-ca. 490 bc), famous for the theorem named after him: that the square of the hypotenuse (longest side) of a right triangle equals the sum of the squares of the other two sides. Pythagoras is said to have discovered the numerical relationship between the length of the strings used in musical instruments and the harmonic combinations of the sounds. In today's language we would describe that relationship by saying that the frequency-the number of vibrations per second-of a string vibrating under fixed tension is inversely proportional to the length of the string. From the practical point of view, this explains why shorter guitar strings produce a higher pitch than longer ones. Pythagoras probably did not really discover this-he also did not discover the theorem that bears his name- but there is evidence that some relation between string length and pitch was known in his day. If so, one could call that simple mathematical formula the first instance of what we now know as theoretical physics.

Continues...

Excerpted from The Grand Design by Stephen Hawking Copyright © 2010 by Stephen Hawking. Excerpted by permission of Bantam, a division of Random House, Inc.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Customer Reviews

Average Rating 3.5
( 716 )
Rating Distribution

5 Star

(265)

4 Star

(163)

3 Star

(167)

2 Star

(66)

1 Star

(55)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
See All Sort by: Showing 1 – 20 of 726 Customer Reviews
  • Posted September 3, 2010

    My thoughts pre-read

    I realize that most theists will try to debunk this as much as they can before ever actually ever reading this book but I want to make a few things clear before they start.

    I don't think this book will claim there is no chance at god at all, it will simply debunk the argument that "something" had to create the universe, and that something must be God. He will simply be arguing, no, actually what we know now in science (or at least what we think) shows that you don't need a god to start the big bang or to explain anything else that would require God's existence.

    I think his argument will simply be not that there is no god, for there could be one even if it wasn't required we have one, rather he will be making the case that god isn't needed to explain the universe.

    56 out of 75 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted September 19, 2010

    more from this reviewer

    I Also Recommend:

    Brilliant

    This is, by far, Hawkings best prose showing yet. Well written and well argued, this book sets out his most recent thoughts on how the universe began in a comprehensive manner. For such a short book (Roughly 110 pages) there is a lot to take in. But it's presented in a way that the layman can understand it.

    Highly recommended!

    22 out of 25 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted August 15, 2010

    more from this reviewer

    Brilliant

    I don't have the words to adequately describe Mr Hawking's book -- or any other of his books. I do know that I am in awe of everything he writes.
    He doesn't throw ideas out -- he proves them. I've never had such a positive and emotional reaction reading anything by anyone else other than him.

    15 out of 29 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted September 3, 2010

    :D

    Stephen Hawkings is the Einstein of today, it would be irresponsible to not read this book

    BTW: CoryLuLu's review is a must read.

    12 out of 21 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted September 9, 2010

    more from this reviewer

    THE FIRST SCAN OF THE BOOK: LOTS OF GREAT TAKING POINTS

    I enjoy the reference to the Hitchhikers Guide to the galaxy. Not "42" for the meaning of life and every thing. Even it tried to Get rid of God. But, God can take care of Him/Her self. But that is another topic. Science is for on going exploring, to reason out and rethinking the galaxy's unknown. Let the debate start and all will learn.

    9 out of 20 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted January 15, 2011

    Regurgitated Science, Anti-religious Rantings

    To pick up a book by Stephen Hawkings, a reader probably already has an interest in science, and in the universe in particular. For someone like me, a high school physics and math teacher and a student of space science my entire life, I found this book to merely repeat much of the material on a "Theory of Everything" that I have read elsewhere. Unlike other books I have read, I felt like, for the derogatory "general" reader to which this book refers as its audience, it does a paultry job of explaning the theories on which the authors' new assertion are based. I was even more disappointed to discover that the only new material I read in this book constituted only 10 out of a 180 pages (and I feel I am being generous in giving the authors that many). In those 10 pages, much of what the authors discussed I have read in Scientific American articles.

    The authors also spend an inordinate amount of time bashing religion. This is unnecessary in a science book and degrades from the validity of the authors' message. If the science is good, it will address the religious asssertions without wasting ink- for the mere 180 pages in this book, I would have preferred more science and less atheist propaganda.

    SAVE YOURSELF SOME TIME: BUY THE SEPTEMBER 2010 ISSUE OF SCIENTIFIC AMERICAN AND READ THE AUTHORS' ASSERTIONS. Unless you're a science teacher who could use some of the additional illustrations in class, the book isn't worth the money. A better book for pictures is Hawking's "The Illustrated Universe in a Nutshell."

    8 out of 17 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted November 14, 2010

    Great book but not on the Nook

    The diagrams and illustrations in this book are unreadable on the Nook, even with type increased to extra large. This inhibits our understanding of the complex principles explained and detracts from the beauty of the book. I don't know if this is inherent in the Nook format or just a problem with this book, but this is one to purchase on paper.

    8 out of 11 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted September 30, 2010

    Quite a Book!

    If you've ever wanted to understand more about all there is, this is the book to have. Set aside some time and go through it, at least once.

    8 out of 12 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted October 5, 2010

    More of the same muddled thinking - down the rabbit hole again

    It would be nice if eminent scientists would stop misusing the word "nothing". When the authors of this book use that word, they must mean a special kind of nothing that has potential universes hidden in it. But wait - if nothing exists then there is no "it", no "then", no potential for anything, no laws of gravity or any laws at all, nothing to fluctuate or change states. Saying the universe spontaneously arose out of nothing doesn't answer anything because the idea is based on a bad assumption - namely that "nothing" really means a little "something" - just enough something that lets us ignore the real problem and get on with our theories. This kind of thinking has been in physics and cosmology books for years, and it doesn't seem to be getting any better.

    7 out of 23 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted October 3, 2010

    Thought-provoking, even if not a "philosophy killer"

    Good, thought-provoking read, even if it is not the "philosophy killing" argument that the authors claim it to be. Part of the fun of reading it, though, is the sheer audacity displayed as the authors build their argument. Compelling.

    6 out of 7 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted June 29, 2010

    Review of synopsis

    Looking forward to reading the book. However, this gem from the synopsis caught my eye:
    What is the "Grand Design" that made it possible for us to have found a home in the one universe, out of zillions, where human life is possible?
    Is the synopsis writer serious? Perhaps he would also like to pose such deep thoughts as how extraordinarily lucky that desert animals live in deserts while fish live in water, because otherwise they would both die. How lucky that snow happens only in cold areas. How does water know to flow through river beds rather than atop mountains.
    Perhaps the deep thinking should be left to Hawking.

    6 out of 51 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted October 7, 2011

    A brilliant summation of the role of science and reason

    Ignore the naysayers who have obviously not even read the book. This book in no way attempts to "disprove" anything or "attack" religion. In fact Hawking clearly states that "neither [a God-created or big bang-created] model can be said to be more real than the other". Instead, he simply states the obvious fact that science must follow the scientific method, accepting or rejecting theories as necessary based on sound scientific method, reason, and proven fact. The current accepted model, he explains, is simply the best one we have, which most accurately predicts and explains observable phenomena. The laws of physics cannot and will not change, no matter how much some would like them to, and no matter how much faith one has in their own model of life, the universe, and everything. Hawking uses simple, clear language to describe physical laws and scientific method, giving many examples of how an open-minded, unbiased approach to science is the only approach which will allow us to someday find the truth of the whys and hows of our existence. Free of heavy scientific jargon and complex mathematical proofs, The Grand Design is written as a way to explain physical laws and theories to those who are not familiar with the world of science, and it does so very well. A must read for anyone interested interested in seeking an answer to life's great questions.

    5 out of 6 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 9, 2011

    A Must Read for anyone interested in the origins of the universe

    Very thought provoking book for the general reader. Having no formal education in advanced mathematics or physics I appreciate the lack of complex mathematical equations in this book. The concepts are presented in a way that is relatively easy to understand although you may have to read parts of the book more than once to get it! Prior to purchasing this book I had heard that its main purpose was to disprove the existence of God. I'm not sure how one proves or disproves the existence of God and in any event that's not what the book is about. My advice is to buy the book and read it. It will expand your intellect at least a little, maybe alot!

    4 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted November 17, 2010

    crap

    I don't know if the book is good or not. Barnes and Noble downloads only part of it. 115 of 208 pages. nook is a rip-off

    4 out of 14 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted September 13, 2010

    Poor Quality Hardcover

    The Grand Design was the poorest quality hardcover book I have ever purchased. As soon as I began to look at the book the binding came apart. I'm returning the hardcover and waiting for the paperback edition to come out to see if it's made any better.

    4 out of 20 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted October 24, 2010

    Good book, not Hawking's greatest

    I am not a physicist, I can't proclaim that I understood all of the reasoning. For sure we are far away of understanding the grand design today as much as we were a century ago

    3 out of 6 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted October 15, 2010

    Great read for the entry level cosmologist.

    As usual, Stephen Hawking brings one of the most confusing and difficult subjects into focus for the layperson. He touches on just the right amount of history to whet your appetite for more while keeping on you on the subject and on course to the end of the book.

    Although I found it a pleasurable read, it was mostly a quick overview of the last centuries' discoveries in physics and cosmology. The point of the book showing that the universe didn't need an "intelligent designer" is somewhat overblown. And anyway, if someone needs to believe in an intelligent designer, they will, no matter what Stephen says.

    3 out of 6 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted October 2, 2010

    Design

    Just a thought from a common lay-person. A design must always have a designer.

    3 out of 30 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 29, 2011

    Avoid

    A retread of ideas covered much better and more entertaining in his other books. Library card stuff if you just gotta read it.

    2 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 18, 2010

    Awesome Read!

    This is a brilliant book... very mentally stimulating! I would recommend it to anyone who loves science.

    2 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
See All Sort by: Showing 1 – 20 of 726 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)